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ABSTRACT 

 

Soil Moisture and Water Stage Estimation 

Using Precipitation Radar 

 

 

By 

 

Sumit Puri 

 

Dr. Sajjad Ahmad, Examination Committee Chair 

Assistant Professor 

University of Nevada, Las Vegas 
 

 In south-western United States, soil moisture data is important for drought studies 

in the region which is experiencing a drought for many years, whereas in South Florida, 

water stage data is required by hydrologists to monitor the hydrological flow in wetlands. 

Soil moisture data and water stage data are not sufficiently available due to sparse 

monitoring stations. Installation of dense measuring stations over an extended area is 

costly and labor intensive. Therefore, there is a need to develop an alternative method of 

measuring soil moisture and water stage. 

  Microwave remote sensing has proven to be a useful tool in the measurement of 

various surface variables from space. This research explores the capability of microwave 

remote sensing to measure soil moisture and water stage on the earth from space. 

Tropical Rainfall Measuring Mission Precipitation Radar (TRMMPR) provides the Ku-

band backscatter measurements that are used to measure soil moisture and water stage. 

Models that relate soil moisture and water stage to TRMMPR backscatter (σ°) are 

developed. The dependence of σ° on the dielectrical and physical characteristics of the 
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land surface is used as the basis of this research. The soil moisture content affects σ° by 

changing the dielectric constant of the surface whereas the vegetation density affects σ° 

by changing the physical characteristics of the surface. Vegetation density in the model is 

represented by Normalized Difference Vegetation Index (NDVI). Dependence of σ° on 

partial submergence of vegetation in inundated areas is used to measure water stage in 

wetlands of South Florida. The effects of the exposed vegetation above the water surface 

on the model are assessed by comparing two cases of model run‒ (a) that includes NDVI 

in the model, and (b) that does not include NDVI in the model. 

  Eleven years of data is used in this research where 75% of the data is used for 

calibration of the model and 25% of the data is used for validation. The estimated values 

of soil moisture and water stage are compared to the observed values and the 

performance of the models is assessed by calculating correlation coefficients, calculating 

root mean square errors, and plotting non-exceedance probability plots for the absolute 

error between observed and modeled values. 

   The soil moisture and water stage models work reasonably well and are able to 

estimate soil moisture and water stage with low errors. The soil moisture model works 

better in low vegetated areas because low vegetation allows the incident radiation to 

penetrate through the canopy cover and provide measurements from underlying surfaces. 

The water stage model works better in shrublands where there are no tree trunks and the 

model has an immediate impact from the vegetation canopy. This research provides an 

alternate way of measurement of soil moisture and water stage using remote sensing.  
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CHAPTER 1                                                                            

INTRODUCTION 

The southern regions of United States (US) are host to various water related 

problems. Long term droughts and floods are common in various parts of Southern US. 

Droughts severely damage the agricultural crops and impact the economic conditions of 

the affected area. Decrease in water levels in storage lakes and reservoirs can result in 

scarcity of water throughout the region. Such scarcity of water has a negative effect on 

the inhabitants, flora, and fauna of drought-affected regions. Due to the adverse effects of 

drought on socio-economic conditions it is imperative to study the factors influencing 

drought occurrence and severity. One of the factors that has the potential of predicting 

drought conditions is the spatio-temporal variation of water contained in the soil. The 

amount of recent precipitation, agricultural potential, and water storage is reflected in the 

soil water content and serves as an indicator of drought (Su et al., 2003). Thus, water 

present in the soil can provide insight into the drought conditions. 

Parts of the southern US are also inundated perennially and constitute vast 

swamps and wetlands. These wetlands are habitat to diverse vegetation and wildlife. 

Wetland ecosystems have deteriorated in recent years due to various anthropogenic 

activities such as urban sprawl. Recently, efforts have been made by scientists and 

engineers to restore degraded wetland ecosystems.  This requires understanding of the 

hydrological patterns of water flow in the area. Information on patterns of water stage 

can play a key role in the mitigation of anthropogenic impacts and help in the restoration 
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of the wetland ecosystem. 

The water related problems in the southern US can be addressed by understanding 

the hydrological processes in the region. The understanding of these hydrological 

processes is important as it provides groundwork for future scientific studies.  

Soil moisture measurements can help hydrologists, scientists, resource managers, 

and planners to effectively monitor drought conditions. Measurements of water stage are 

useful in restoring the fragile ecosystem of wetlands. High resolution maps could provide 

a comprehensive spatio-temporal behavior of soil moisture and water stage. However, 

soil moisture measurements are not available over large extended areas because their 

measurement stations are sparsely located. Even water stage measurements are not 

available because of limited number of water stage measuring stations. Installation of 

dense network of stations would involve high costs due to purchase of sophisticated 

instruments and hiring skilled labor to use those instruments. An alternate way to acquire 

soil moisture and water stage data is by employing space borne remote sensing. 

Remote sensing in microwave portion of the electromagnetic spectrum is very 

advantageous for mapping land surface characteristics such as soil moisture and water 

stage. Microwave remote sensing is independent of solar illumination and provides day 

and night observations. It is less affected by the atmosphere and can provide observations 

in all weather conditions. Microwave remote sensing is also sensitive to dielectric 

properties of the surface and hence can be used to detect water. Microwave remote 

sensing is also sensitive to physical and geometrical characteristics of the land surface 
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and thus can be used to measure water stage.  

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched by 

NASA in December 1997 to study the rainfall patterns in tropical regions of the globe. 

Precipitation Radar aboard TRMM is a radar that operates in the Ku-band of the 

microwave region. It transmits a pulse of energy to the ground which scatters off the 

ground surface depending on its physical and electrical properties. The portion of energy 

scattered back to the radar receiver is referred to as backscatter. This backscatter can be 

used to understand the spatio-temporal extent of soil moisture and water stage. 

 

1.1. Research Motivation 

The southern US is experiencing different water resources issues in two different 

regions‒ western region and eastern region. Western parts of Southern US within the 

Colorado River Basin have endured drought like conditions since 2000. This has 

become the longest and worst drought in the past 80 years (Piechota et al., 2004). On the 

other hand, in south-eastern parts of US comprising of Everglades, serious efforts are 

being undertaken to restore the wetland ecosystem and mitigate the human activities for 

water supply, agricultural development, and flood control purposes that have disrupted 

the natural flow of water.  

The Everglades are subtropical wetlands in Southern Florida which provide a 

unique habitat for a range of plant and animal species. This ecosystem has degraded and 

been reduced in size due to anthropogenic activities (Wdowinski et al., 2004). Recently, 
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efforts have been made to restore this habitat. Restoration efforts include restoring the 

natural hydroperiod that refers to the cyclic rise and fall of water levels corresponding to 

the seasonal variation in rainfall. Restoration of Everglades’s hydroperiod is obstructed 

by dense network of manmade levees, flood gates and other control channels. This 

region has both a managed and natural flow wetland environment. Understanding the 

hydrological movements in wetlands requires the knowledge of water stage to assess the 

flow patterns.  

Soil moisture and water stage measurement over large extent are required to 

understand drought conditions and restoring the wetland ecosystem, respectively. 

However, soil moisture and water stage data is scarce because existing observation sites 

are rare and sparse. In-situ measurement of these variables in the field is difficult and 

expensive. There is a need of alternate methods to measure soil moisture and water 

stage. Space-borne microwave remote sensing can be used to obtain a comprehensive 

spatio-temporal understanding of soil moisture and water stage. 

Tropical Rainfall Measuring Mission Precipitation Radar (TRMMPR) has been 

providing land surface backscatter measurements since 1998. These backscatter 

measurements are sensitive to dielectric and physical properties of the land surface. The 

sensitivity to dielectric measurements can be linked to the moisture content in the soil. 

Physical properties of inundated areas affect backscatter measurements that can be 

linked to water stage.  Availability of eleven years of TRMMPR data provides an 

opportunity to perform a long-term analysis of backscatter in relation to soil moisture 
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and water stage. 

 

1.2. Research Objectives 

This research aims to develop models that can estimate the soil moisture and 

water stage from TRMMPR backscatter measurements. The soil moisture and water 

stage is related to backscatter measurements and dependence on the type and greenness 

of vegetation cover is investigated. The vegetation in the models is represented by the 

Normalized Difference Vegetation Index (NDVI), a measure of greenness of vegetation. 

Both the soil moisture model and water stage model are point based empirical models 

that are assumed to be linearly related to backscatter and NDVI. The models are 

calibrated using the ground measurements of soil moisture and water stage over several 

ground stations in various landcovers. The calibrated models are then used to estimate 

soil moisture and water stage at the measuring sites. Modeled soil moisture and water 

stage is compared with ground measurement to assess the accuracy of the model. 

Key research questions addressed in this study are as follows. 

1. Can active sensors such as TRMMPR be used to measure soil moisture? 

2. How is TRMMPR backscatter measurements related to water stage? 

3. What is the affect of vegetation on the relationship of backscatter and soil moisture?  

4. How does vegetation impact the relationship between backscatter and water stage? 

In order to address the above mentioned research questions, following tasks are 

undertaken. 
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1. Orbital TRMMPR backscatter data from NASA, soil moisture data from Soil Climate 

Analaysis Network, water stage from South Florida Water Management District, 

landcover classification map from University of Maryland, and NDVI from Advanced 

Very High Resolution Radiometer are obtained. 

2. The soil moisture, water stage, and NDVI data is averaged to match with the temporal 

resolution of backscatter data used in both the models. 

3. A model relating soil moisture with backscatter and NDVI is developed.  

4. A model that relates water stage to backscatter is developed. The effect of NDVI on 

the model is also assessed. 

5. The soil moisture model is calibrated and validated using ground measurements of 

soil moisture over Southern United States. 

6. Water stage model is calibrated and validated in South Florida. 

7. The modeled values of soil moisture and water stage and their observed values are 

compared and the accuracy of the models at various sites is assessed. 

This research is organized as follows. Chapter 2 presents a review of literature 

that describes the study areas, and existing methods used to measure soil moisture and 

water stage.  The advantages of microwave remote sensing and characteristics of 

TRMMPR backscatter are also presented. Furthermore, the effects of vegetation on the 

backscatter used to measure soil moisture and water stage are discussed. Chapter 3 is a 

manuscript titled, ‘Relating Surface Backscatter Response from TRMMPR to SCAN 

Soil Moisture in Southern United States’. This manuscript describes the soil moisture 
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model and the model parameters. The water stage model is described in Chapter 4 

which consists of the manuscript titled, ‘Estimation of Water Stage over wetlands of 

South Florida using TRMMPR observations’. Finally, the conclusions and 

recommendations are presented in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter is organized as follows. Section 2.1 discusses the study area, its 

historic growth and climatic conditions. The physical features of Southern United States 

and South Florida that contribute to drought and wetland ecosystem, respectively is also 

discussed in this section. Section 2.2 describes the importance of soil moisture and 

water stage in the study area. Different techniques used to measure soil moisture and 

water stage are also described. Section 2.3 describes the characteristics of TRMMPR 

backscatter and its role in determination of soil moisture and water stage. The effects on 

vegetation are also summarized in the form of NDVI that serves as an index of 

vegetation.  

 

2.1. Study Area 

There are two areas of study in this research. The soil moisture mapping is done 

in southern US and water stage modeling is carried out in South Florida. The 

characteristics of each of the study area are described below. 

 

2.2. Southern United States 

The Southern US studied in this research comprises of Arizona and New Mexico 

in the west, Texas and Oklahoma in the mid-west, and Mississippi, Alabama, Georgia, 

South Carolina, and Florida in the east. Figure 1 shows the map of US. The Southern 
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US has a varied topography. A broad, flat coastal plains spreads from Texas to Florida 

peninsula. The southeastern part of US mainly consists of sub-tropical forests. 

Mangrove wetlands cover a majority part of Florida. The Appalachian Mountains lie in 

the northern parts of Alabama and Georgia. West of the Appalachian Mountains, is the 

Mississippi river basin. The mid-west region near the basin mainly consists of rolling 

hills and productive farmlands. The Great Plains lie west of Mississippi river basin and 

east of Rocky Mountains. Majority of the agricultural produce is grown in the farmlands 

of these Great Plains. The low relief of the area suddenly changes to mountain ranges in 

the Rocky Mountains. Rocky Mountains extend from Canada in the north to Mexico in 

the south. Rocky Mountains in the southern US consists of various smaller mountain 

ranges forming a large number of valleys and basins. The south western areas mainly 

comprise of desert and arid regions. These areas receive rainfall of less than 0.5 ft in an 

year whereas eastern coast receives rainfall on the order of 5 ft/year. 
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Figure 1 Landcover Map of United States. 

 

The varied topography from mountains in the south-west to plains in the mid-

west and wetlands in the south-east, is subjected to varied types of landuse and 

landcover. The arid and semi-arid western ranges that is mostly covered by deserts is 

home to open shrublands and bare ground. In open shrublands canopy cover lies 

between 10% to 40%. The remaining cover is mostly barren. The tree heights in open 

shrublands are less than 6 ft (Hansen et al., 2000). This land type is mostly due to the 

lack of rainfall in the region and its arid climate. There is a transition from open 

shrublands to grasslands moving towards the Great Plains.  
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This area covered by Great Plains consists of grasslands and wooded grasslands. 

Grasslands consist of herbaceous cover with very few trees or canopy cover. The 

wooded grasslands have less than 40% cover of trees where tree heights are less than 15 

ft. This area also contains closed shrublands which differs from open shrublands in 

terms of tree height and canopy cover of bushes and shrubs. The tree height in closed 

shrubland is not more than 15 ft whereas in open shrublands tree heights do not increase 

more than 6 ft. The percent canopy cover of bush and shrub is less than 10% in open 

shrublands. On the other hand, bush and shrub canopy cover in closed shrubland lies 

between 10% and 40%.  

The Mississippi river basin and the area east to it mainly comprises of 

woodlands and croplands though little presence of evergreen forests is also observed. 

Tree heights in the woodlands exceed 15 ft and the tree canopy cover is between 40% 

and 60%. Croplands on the other hand consist of crop producing fields that span more 

than 80% of the cover. The patches of evergreen forests remain green throughout the 

year with tree heights exceeding 15 ft. These forests are abundant with trees with their 

canopy exceeding 60% of the area. The south-eastern parts of US are abundant with 

wooded grasslands and grasslands that form the mangrove wetlands. The major 

landcover types of Southern US are summarized in Table 1. 
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 Table 1 Summary of various landuse types in Southern US (Hansen et al., 2000). 

Landuse Type Tree Height Canopy Cover Dominant areas 

Bare Ground - < 10% vegetation South-western 

Open Shrublands < 6 ft 10% < bush/shrub < 40% South-western 

Closed Shrublands < 15 ft Bush/shrub > 40% Mid-west 

Grasslands - Herbaceous cover Mid-west 

Wooded Grasslands > 15 ft 10% < tree canopy < 40% Mid-west 

Woodlands > 15 ft 40% < tree canopy < 60% South-eastern 

Croplands - Crop producing fields South-eastern 

Forests > 15 ft Tree canopy > 60% Eastern 

 

2.3. South Florida 

South Florida is geographically defined by water as it is surrounded by Atlantic 

Ocean on one side and Gulf of Mexico on the other two sides. It consists of thousands of 

small lakes and water bodies. The largest lake in the region is Lake Okeechobee that 

occupies 730 square miles of the area. It is a shallow lake with mean depth of 9 ft. 

Generally lake levels are maintained between 13 ft to 15 ft of National Geodetic Vertical 

Datum (NGVD) that makes the storage capacity to 300, 000 ac-ft. Lake Okeechobee has 

many waterfowl (ducks, swans, etc.) as breeding and brood-rearing habitat. The littoral 

zone of the lake that spans about 150 square miles is home for nesting fish and wading 

birds.  

Kissimmee River lies to the north of the lake and drains into Lake Okeechobee. 

Caloosahatchee River on the western side and St. Lucie Canal on the eastern side are 

two outlets of the lake that drains into Gulf of Mexico and Atlantic Ocean, respectively. 

The Everglades Agricultural Area (EAA) lies to the immediate south of the Lake 

Okeechobee. Many canals run through the EAA originating from the Lake Okeechobee 
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to the Atlantic Ocean as shown in Figure 2. Adjacent to EAA are the Water Conservation 

Areas (WCAs) that store the surplus water in the region. This region has the maximum 

number of manmade levees and water control structures. There is a complex interaction 

between manmade and natural features in this region. The Lower East Coast (LEC) 

comprises of various urban cities such as Miami, West Palm Beach, and Fort 

Lauderdale. This densely populated area lies near the lower south eastern coast adjacent 

to low-lying Everglades National Park (ENP) and agricultural land on the west. ENP is 

covered mainly with the tropical and sub-tropical forests and preserves the natural 

environment of Everglades.  

The South Florida region is characterized by heavy rainfall of about 3.6-4.5 ft/yr 

that results in large volumes of surface water. Most of this water evaporates, infiltrates 

or drains to the ocean. One of the major economic activities of the region is agriculture 

that is abundant in the interior of South Florida. The climate of South Florida is 

favorable to growth of large variety of crops throughout the year. Sugarcane and citrus 

fruits are the major agricultural produce of the region. These large scale agricultural 

practices in South Florida started in 1920 after draining large volumes of peat soil from 

the region. This increased the agricultural water demand in the region. This water 

demand was further increased with growing human population in the surrounding areas 

of LEC.  

Human settlements on the Atlantic Coastal Ridge started because the location 

was favorable for marine trade. The urbanization led to increase in development of 
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agricultural areas and flood control structures which ultimately led to draining of 

Everglades. South Florida faces a common problem of saltwater intrusion. The region 

consists of various canals that drain from interiors of South Florida and drains to nearby 

Gulf of Mexico or Atlantic Ocean. These canals lower the water table and allow the 

intrusion of seawater. During dry season and periods of droughts, the seawater moves 

inland through the canals and infiltrates into the aquifers. Lowering of ground water 

table creates a negative head and allows the seepage of saltwater into the aquifers. 

However, the problem of uncontrolled saltwater intrusion has been addressed by 

construction of various control structures near the outlets of the drainage canals. These 

controls are opened to release excess of water during rainy seasons to avoid flooding in 

the region. During the dry season, these gates are closed to prevent the intrusion of 

seawater through canals. South Florida Water Management District (SFWMD) is a 

government agency that operates the water control structures in South Florida to prevent 

flooding and regulate the water flow. In certain areas, mainly WCAs the operation of the 

flood control structures result in the accumulation of water in excess of natural 

background levels (Wdowinski et al., 2008).  
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Figure 2 Geographical features of South Florida (Source: SFWMD website). 

 

2.4. Ground Data 

The measuring stations for soil moisture and water stage are sparsely located and 

hence measurement of soil moisture and water stage at a large spatial scale is not 

possible. This research proposes an alternate way of measurement of soil moisture and 

water stage that uses remote sensing techniques. In order to validate the method 

proposed in this research. The ground data of soil moisture and water stage at available 

stations is hence used. The importance of soil moisture and the reasons for which it 

should be monitored at large spatial scales is described below. 

 

2.5. Soil Moisture 

Soil moisture (ms) is an important factor in global hydrological circulation and 
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plays a significant role in the research of hydrology, climatology, and meteorology 

(Schneider et al., 2008; Das et al., 2008; Song et al., 2007). ms is an important variable 

in the hydrological cycle. It plays a critical role in various environmental processes 

because it is the only variable that influences the land surface interactions with the 

atmosphere by describing the water and energy exchanges. ms plays a critical role in 

many hydrological processes including infiltration, evaporation, and runoff. Soil 

moisture regulates the surface thermodynamics and determines the distribution of 

incident solar radiations into sensible and latent heat thus, governing the 

evapotranspiration. On the basis of evapotranspiration, differential surface heating of the 

land takes place that results in convective behavior of atmospheric particles and winds. 

The differential surface heating influences water and energy exchanges at the interface 

of land with atmosphere through feedback between precipitation and soil moisture. 

The feedback between precipitation and soil moisture is useful in understanding 

the hydrological relationship between rainfall and surface runoff. ms influences the 

division of rainfall into infiltration and surface runoff. A saturated land mass rainfall 

generates more runoff as compared to dry land mass where majority of the water 

percolates into the ground and adds to the ground water table or becomes part of the 

base flow.  

ms status in the root zone is an important component of the water cycle at point, 

field, catchment, watershed, and regional scales. This makes monitoring soil moisture 

important for making irrigation scheduling decisions. Lower soil moisture content 
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results in improper nourishment of crops whereas; higher moisture content leads to 

leaching of nutrients vital for crops. Since soil moisture has the potential to affect both 

rainfall and irrigation, accurate knowledge of soil moisture can provide a good insight 

into drought conditions of an area.  

Soil moisture is highly variable both spatially and temporally. In spite of being 

such an important variable, ms data is not sufficiently available. Soil moisture 

measurements from the experiments are available at only few selected locations 

(Wagner et al., 2003; Das et al., 2008). Measuring ms is a difficult task because it 

involves costly instruments and skilled labor. Description of some of the traditional 

methods used to measure ms with their advantages and disadvantages are provided 

below.   

Gravimetry 

Gravimetry is based on the traditional method of sampling and drying. The soil 

samples are collected at desired locations and depth using augers and drills. These soil 

samples are then taken to a laboratory and weighed. The samples are then oven dried for 

24 hours and dried weight is measured again giving the volume of water present by 

weight in the sample. This method is simple and easy to use. It is also less costly as it 

does not need any sophisticated instruments. Gravimetric soil moisture can be converted 

to volumetric soil moisture using conversion formulas. The disadvantage of this method 

is it takes a long time for the oven drying process. Also the process of obtaining the soil 

samples using augers and drills disturbs the natural setting of the soil mass.  
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Tensiometry 

This technique is widely used by farmers to assess the need for irrigation of 

crops. Tensiometer is a simple instrument and is generally installed in pairs. One 

tensiometer is inserted in the ground at shallow depths to measure the moisture in the 

root zone of soil layer and the other at deeper location to monitor the moisture 

conditions below the soil root zone. The basic principle behind the instrument is to 

measure the tension by which water is entrapped in the soil. For a near saturated 

condition when sufficient water is stored in the soil, there is less tension in the soil to 

hold the water particles. However, as the water content gets depleted, the soil particles 

hold the water more tightly thereby increasing the tension. Tensiometers consist of a 

bulb of porous ceramic substance and needs to be installed very carefully.  It gives a 

reading of zero for saturated soil and higher reading of around 85 for drier soil. Though 

a simple method, tensiometers need maintenance at a regular interval. 

Time Domain Reflectometry (TDR)  

Time Domain Reflectometer is an electrical instrument that measures the 

dielectric constant of a soil. It consists of a transmitter and a receiver. The transmitter 

sends a signal into the soil mass and the receiver receives the signal after a time lag. 

This time lag in a soil depends on the dielectric constant of the soil which is a measure 

of the moisture in the soil. Soils with high moisture content have a high dielectric 

constant that produces longer time lag between transmitted and received signals. This 

method of measurement of soil moisture is costly because of the expensive electrical 



www.manaraa.com

19 

 

instrument involved. 

Neutron Probe (NP)  

The Neutron probe method is based on the flux of slowing neutrons. Presence of 

hydrogen in any substance decreases the motion of the neutrons. Soil contains hydrogen 

as organic matter or other material and in the form of the water. Quantity of hydrogen 

present in the form of organic and other matter is dependent on the soil texture and the 

type of soil and doesn’t change over time. However, hydrogen present in water 

molecules, changes with the variation in the moisture content of the soil. This change in 

hydrogen is detected by slowing speeds of neutrons. The major disadvantage of this 

method is that it requires the calibration of the instrument repeatedly. Due to exposure 

to gamma radiations and neutrons, it poses a health hazard to users. 

The soil moisture data is this research is obtained from Soil Climate Analysis 

Network (SCAN) that measures the ground ms using Hydra probe II SM sensor and 

provides hourly values of volumetric ms. The Hydra Probe is a Frequency Domain 

Reflectometer. It consists of capacitance plates inserted in the soil medium forming a 

capacitor. The capacitance changes with the change in dielectric constant of the soil 

medium. Hence, any changes in the soil moisture content are reflected in the 

capacitance of the capacitor. An oscillator is used in the setup to complete the circuit. 

With the change in capacitance induced by the soil moisture variation, the operating 

frequency of the circuit varies. This frequency variation is used to measure the soil 

moisture by the Hydra probe sensor. 
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A soil sample consists of solid soil particles and voids that are occupied by water 

and air as shown in Figure 3. In a relatively dry soil sample, the water molecules are 

tightly held by the soil particles. As the water content increases, water moves more 

freely in the soil mass. This free movement of water in the soil increases the dielectric 

constant of the soil. The dielectric constant (ε) of water is very high (ε~80) as compared 

to dry soil mass which has very low dielectric constant (ε~6). The microwave remote 

sensing techniques being sensitive to dielectric properties of surface use this difference 

in ε to measure soil moisture in a soil sample. The microwave remote sensing 

techniques to measure soil moisture are described in detail in the subsequent sections. 

 

 

Figure 3 A sample of soil mass. 

 

2.6. Water Stage 

Areas like wetlands and swamps are inundated with water throughout the year. 

They form a distinct ecosystem with diverse flora and fauna. Wetlands provide habitat 

for waterfowl, fish, and wildlife. It supports rich biodiversity including threatened and 
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endangered species (Ozesmi and Bauer, 2002). Wetland inundation assists in ground 

water recharge (Daily et al., 1997) and improves the water quality. Flooding and 

changes in water levels in wetlands play an important role in regulating the flow of 

water in these areas. Flooding impacts the hydrology, ecology, biology, and 

geochemistry of the lakes and wetlands (Zhang, 2008). Fluctuations in water stages in 

wetlands impact the nesting patterns of waterfowl by affecting their food supply 

(Swanson, 1988; Swanson and Duebbert, 1989; Covich et al., 1997). It changes the 

water salinity thereby modifying the vegetation patterns of wetlands (Gorham et al., 

1983; LaBaugh et al. 1996; Mulhouse and Galatowitsch, 2003; van der Valk, 2005). In 

addition to this, different water stages are associated with different flow paths between 

surface water and ground water (Johnson et al., 2004).  

After the beginning of 20
th
 century, various anthropogenic impacts due to 

residential water demand, agricultural water demand and flood control purposes 

degraded the natural flow of wetland environment and adversely affected the ecology in 

the area. The agricultural activities damage the wetlands because of the sediments and 

pollution from fertilizers and pesticides (Martin and Hartman, 1987). Recently many 

efforts have been made to restore the wetland ecosystem. This requires understanding 

the hydrology of the area. Since these wetlands comprise of several lakes and water 

bodies of various sizes, tremendous hydrological variability of annual and inter-annual 

time scales is exhibited (Zhang, 2008). Due to geological complexity and lack of 

hydrological surveys, the smaller bodies of water are not monitored significantly which 
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makes the estimation of water stage on ground difficult to measure.  

Determination of water stage changes is important for hydrological modeling 

and understanding of wetland ecosystem (Bourgeau-Chavez et al., 2005). However, the 

in-situ stage measurements are not available at an extensive network which has led to 

research on the use of microwave remote sensing in monitoring water stage (Alsdorf et 

al., 2000). Several studies have been carried out to monitor water stage using imaging 

radar such as Synthetic Aperture Radar (Kasischke et al., 2003; Wdowinski et al., 2004; 

Hess et al., 1995; Wang et al., 1995), passive microwave sensors (Sippe et al., 1998), 

and landsat thematic mapper (Mertes et al., 1995). The concept of remote sensing of 

water stage is based on the double-bounce reflection of the transmitted radar signal that 

takes place from the horizontal water surface and vertical vegetation (Richards et al., 

1987). In non-vegetated areas, the water surface acts as a mirror and specular reflection 

of the transmitted radar signal takes place from the surface of the water.  

Detection of water stage depends on the wavelength of imaging radar. Long 

wavelength, such as L-band (23 cm) can detect water stage changes beneath dense 

vegetation canopies as the incident radiations are able to penetrate through the canopy 

(Hess et al., 1990; Pope et al., 1994). Relatively shorter wavelength such as C-band (5.6 

cm) can effectively monitor water level changes of herbaceous wetland ecosystem 

(Bourgeau-Chavez et al., 2005). In this research, the incident radiations from Ku-band 

(2.2 cm) are investigated over Everglades in South Florida and the dependence of 

backscatter on the partial submergence of vegetation in water is explored. 
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The stage data for this research is obtained from South Florida Water 

Management District (SFWMD) database. The stage data is provided as daily average 

levels above the National Geodetic Vertical Datum of 1929 (NGVD29). SFWMD 

monitors a network of control stations that provide daily average estimates of water 

level, rainfall, and other key hydrologic parameters. Most of the stage measurement 

stations are located near the water control structures for logistical and operational 

reasons (Wdowinski et al., 2008). As a result, interiors of natural flow wetlands are 

sparsely monitored. Hence, efforts have been in the field of space based remote sensing 

that provides high spatial resolution measurements of water level over wide areas.  

 

2.7. Microwave Remote Sensing 

Remote sensing in the microwave region of the electromagnetic spectrum is 

called Microwave Remote sensing. The electromagnetic spectrum with the frequency 

range of microwave band is shown in Figure 4. 

 

 

Figure 4 Electromagnetic Spectrum. 

 

Microwave remote sensing is carried out in the microwave region of the 
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electromagnetic spectrum with frequency ranging from 0.3 GHz to 300 GHz 

(wavelength range from 0.1cm to 100cm). Microwave remote sensing is sensitive to 

physical and electrical properties of the land surface and thus can be used to monitor the 

surface characteristics. The major advantages of microwave remote sensing are (a) It 

does not depend on sun for source of illumination, and (b) It easily passes through 

vegetation and clouds and is not interfered by atmospheric effects (Njoku and 

Entekhabi, 1996). Both active and passive form of remote sensing has been used in the 

past to capture the surface characteristics of the land. Active microwave remote sensing 

is characterized by having its own source of illumination; passive microwave remote 

sensing uses sun as it source of energy.  

Microwave remote sensing is sensitive to the dielectric properties of volumetric 

soil moisture (Ulaby et al., 1986). It is also sensitive to the texture of soil and can 

distinguish between different types of soil- sand, silt and clay at frequencies less than 

10GHz if the soil is dry. At greater frequencies, it is difficult to differentiate between 

different types of soils. Both active and passive microwave remote sensing techniques 

have shown their potential for measurements of soil moisture (Wagner et al., 2003; 

Verhoest et al., 1998; Gao et al., 2006; Engman and Chauhan, 1995). Not even 

microwaves, but optical remote sensing and Global Positioning System (GPS) have also 

been used to map soil moisture in the past (Larson et al., 2008). The passive sensors 

(radiometers) detect the naturally emitted microwave radiations from the ground 

surface. However, in order to obtain the signal, sufficient amount of energy should be 
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detected by the radiometer. This results in high fields of view that makes spatial 

resolution very low (generally greater than 1 km) (Barrett et al., 2009). Many studies 

have been carried out to measure soil moisture using passive sensor (Jackson, 1993; 

Wigneron et al., 1998; Du et al., 2000; Li et al., 2002). 

Although a lot of progress has been made with passive microwave sensors to 

monitor soil moisture (Moran et al., 2006), active sensors provide a higher spatial 

resolution for mapping soil moisture over a large coverage area. Active microwave 

sensors provide their own illumination and capture the signal on the basis of difference 

between transmitted and received microwave radiations. Thus, active sensors do not 

depend on the amount of energy emitted from land surface naturally and this results in 

higher spatial resolution. Mapping of soil moisture using active sensors is described in 

numerous studies (Ulaby and Batlivala, 1976; Ulaby et al., 1978; Jackson et al., 1981; 

Wang et al, 1986; Dobson and Ulaby, 1986; Oki et al., 2000). Active sensors can be 

divided into two categories: imaging (radar) and non-imaging sensors such as altimeters 

and scatterometers. Altimeters are used to measure heights over oceans and cryosphere; 

scatterometers are primarily used to measure wind speed and wind direction over ocean 

surfaces (Barrett et al., 2009).  

Not only active and passive sensors but also many field experiments have been 

carried out to correlate spatial and temporal variability of soil moisture with remote 

sensing measurements. Some of the field experiments done are Washita’ 92 (Jackson et 

al., 1995), Washita 1994 (Wang et al., 1997), SMEX02 (van Zyl et al., 2003), SMEX03 
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(Jackson et al., 2005), SMEX04 (Vivoni et al., 2008), and SMEX05 (Pauwels et al, 

2008).  

Microwave remote sensing can thus effectively provide soil moisture values at a 

large scale over a long period of time. It is a promising method for soil moisture 

estimation (Crosson et al., 2002; Paloscia et al., 2001). Hence, there has been a rising 

interest in remote sensing techniques with applications to the measurement of soil 

moisture (Wagner et al., 1999; Njoku et al., 2003; Moran et al., 2004).  This research 

uses active microwave sensor Precipitation Radar to monitor soil moisture which is 

described in subsequent sections. 

 

2.8. Tropical Rainfall Measuring Mission 

Tropical Rainfall Measuring Mission (TRMM) is a joint mission between 

National Aeronautics Space Administration of USA and National Space Development 

Agency of Japan. It was launched on 27 November 1997 and data became available the 

next month in December (Kummerow et al., 2000). TRMM operates in a 350-km 

circular orbit with an inclination of 35
o
. The objectives of TRMM are to measure 

rainfall and energy exchange of tropical and sub-tropical regions of the world. The 

primary instruments aboard TRMM are Precipitation Radar (PR), TRMM Microwave 

Imager (TMI), Visible Infrared Scanner (VIRS), Lighting Imaging Sensor (LIS), and 

Clouds and Earth’s radiant Energy System (CERES). A diagram of TRMM and the 

instruments aboard it are shown in Figure 5. 
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Figure 5 Instruments aboard TRMM (Source: NASA website). 

 

2.9. TRMM Precipitation Radar 

Precipitation Radar is an imaging radar sensor aboard the TRMM satellite which 

was developed by NASDA and Communications Research Laboratory, Ministry of 

Posts and Telecommunications. Precipitation Radar, operating at 13.8 GHz and 2.2 cm 

of wavelength has a sophisticated cross-track scanning over a swath width of 215 km 

with a cross-range spatial resolution of about 4.3 km. It has a vertical resolution of 

250m (Kozu et al., 2001) that helps in profiling of three dimensional structure of 

rainfall. 

Tropical Rainfall Measuring Mission Precipitation Radar (TRMMPR) 

backscatter (σ°) is the amount of energy scattered back to the receiver from the land 

surface. The intensity of σ° is a function of physical and electrical properties of the 

target along with the wavelength, polarization and incidence angle of the incident 

energy. Since σ° is a function of numerous variables, it is difficult to interpret the 

signals specifically from soil moisture or water stage. σ° depends on surface 
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characteristics of the area including: landuse, landcover, type of soil, vegetation density, 

surface roughness, and moisture content of vegetation and soil. It is difficult to separate 

the effects of vegetation and surface roughness from the dielectric properties. The 

vegetation canopy absorbs and scatters most of the microwave radiation incident on it. 

The amount of energy absorbed is because of the canopy moisture content whereas the 

scattering is a result of the geometrical characteristics of its leaves. The effect of 

vegetation decreases as the wavelength increases (Ulaby et al., 1981). Shorter 

wavelengths such as X-band (λ=3 cm) reflect from the upper surface of canopy whereas 

longer wavelength such as L-band (λ= 24 cm) penetrate through the vegetation canopy 

and reflect from soil surface. All the intermediate wavelength bands reflect from both 

vegetation canopy as well as soil surface. For optimum soil moisture retrieval, it is 

recommended to use longer wavelength with low incidence angles so as to minimize the 

effects of vegetation and surface roughness. This research uses TRMMPR with λ= 2.2 

cm. The study area in this research comprises of patchy vegetation that allows us to 

measure soil moisture effectively over the study area. Surface roughness is another 

variable that interferes in the mapping of soil moisture. It is statistically defined in terms 

of root mean square height, correlation length, and autocorrelation function. 

Determining surface roughness and separating its effects from vegetation is a 

challenging task. For incidence angles greater than 10°, the energy scattered back to the 

sensor increases with the increase in surface roughness (Ulaby and Batlivala, 1976). 

Hence, it is recommended to map surface characteristics such as soil moisture and water 
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stage at an incidence angle of 10°. 

 

2.10.  NDVI 

The Normalized Difference Vegetation Index is a simple numerical indicator 

used in remote sensing to assess the quantity of live green vegetation on the land 

surface. NDVI ranges from -1 to +1. Negative values of NDVI correspond to barren 

areas of rock, sand, or snow. Values close to zero from -0.1 to 0.1 generally correspond 

to water and low, positive values in the range of 0.2-0.4 indicate the presence of shrub 

and grassland, whereas high values approaching 1.0 represent temperate and tropical 

rainforests. 

Live green vegetation absorbs solar energy most of which consists of radiation in 

the Near Infra Red (NIR) region for the purpose of photosynthesis. The leaf cells in the 

vegetation reflect and transmit the radiations in the Red Band of the electromagnetic 

spectrum. This is the basis of computation of NDVI based on the ratio of spectral 

reflectance in NIR and RED region. Mathematically, NDVI is calculated as shown in 

equation 2.1.  

���� �
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Eqn. (2.1) 

where RED and NIR stand for the spectral reflectance measurements acquired in the red 

and near-infrared regions, respectively. 

NDVI of an area consisting of dense vegetation canopy tends to take positive 
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values from around 0.3 to 0.8. Clouds and snow fields produce negative values of 

NDVI. Various water bodies like oceans, seas, lakes and rivers have a low reflectance in 

both NIR and RED bands. This results in low positive or slight negative NDVI values. 

Soils also generate small positive values of NDVI because of their larger NIR spectral 

reflectance than Red. NDVI values are affected by atmospheric effects. The atmospheric 

composition that includes water vapor and aerosols hamper the space borne NDVI 

measurement. Clouds also largely affect the NDVI data and leads to misrepresentations 

of a land surface. 

 

2.11. Summary 

Soil moisture and water stage data is of extreme importance to understand 

various hydrological processes. Sparsely located measurement stations do not provide 

soil moisture and water stage data over a large area for a long duration of time. Remote 

sensing is a useful tool that can be used to monitor soil moisture and water stage 

variation from space. Microwave remote sensing proves very advantageous in this 

regard. The backscatter measurements are sensitive to surface physical and electrical 

properties. Soil moisture is detected by TRMMPR backscatter in terms of dielectric 

constant of soil which is a measure of moisture contained in the soil. Water stage is 

detected by TRMMPR backscatter that measures the physical characteristics such as 

vegetation and surface roughness of the surface. The vegetation parameter is taken into 

account by using NDVI that serves as a measure of live green vegetation. 
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CHAPTER 3                                                        

RELATING SURFACE BACKSCATTER RESPONSE FROM TRMMPR TO SCAN 

SOIL MOISTURE IN SOUTHERN UNITED STATES 

 

3.1. Abstract 

Soil Moisture is an important variable in the hydrological cycle and plays a vital 

role in agronomy, meteorology, and hydrology. It regulates the exchange of water and 

heat between land surface and atmosphere and thus plays an important role in the 

development of weather patterns. It is difficult to obtain a comprehensive spatio-

temporal map of soil moisture at river basin level because of the high costs of 

instrumentation. 

In this paper, a model is developed that estimates soil moisture (ms) using   

backscatter from Tropical Rainfall Measuring Mission Precipitation Radar (TRMMPR) 

and Normalized Difference Vegetation Index (NDVI) over selected points in southern 

parts of United States. Soil moisture measured at 47 Soil and Climate Analysis Network 

(SCAN) stations is used to calibrate and validate the model. SCAN stations are spread 

across 970,000 square miles and are representative of various vegetation densities.  

An empirical model that relates ms to TRMMPR backscatter (σ°) and NDVI is 

developed. The σ° measurements are normalized at an incidence angle of 10°. Model is 

calibrated using 75% of the measured soil moisture data and validated using the 

remaining 25%. The estimated values of ms compare well with the ground 
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measurements. The model works well for various landcovers but works best for low 

vegetated areas. Closed shrubland are low vegetated areas characterized by low NDVI 

values (0.29-0.35). All the soil moisture estimates in this landcover have an absolute 

error of less than 8%. Overall, the model performance is satisfactory as it gives an 

absolute error of 10% or less for 90% of the estimates. Estimation of soil moisture at 

such a wide extent of area with a low magnitude of error provides an additional utility of 

TRMMPR data. 

 

3.2. Introduction 

Soil moisture (ms) is an important variable in the hydrological cycle (Bindlish et 

al., 2003; Schneider et al., 2008; Das and Mohanty, 2006; Song et al., 2007; Verhoest et 

al., 1998). It plays a critical role in many hydrological processes such as precipitation, 

runoff, percolation, infiltration, and evaporation. ms plays a key role in splitting the 

rainfall into runoff and baseflow. The distribution of incident solar energy into the 

sensible and the latent heat depends on the moisture content of the soil (Houser et al., 

1998). ms can serve as an indicator of drought (Su et al., 2003) and thus accurate soil 

moisture information can provide insight into drought conditions. 

Monitoring ms is essential for an effective irrigation management in agriculture. 

ms is a key component of irrigation scheduling decision used to prevent over irrigation 

that results in waste of water and fertilizers through leaching. It also helps keep a check 

on under irrigation that results in immature nourishment of crops.  
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ms is highly variable spatially and temporally and its measuring stations are sparse 

(Wagner et al., 2003; Das et al., 2008). Remote sensing with its ability to cover larger 

area at finer spatial and temporal resolution provides an opportunity to measure soil 

moisture from space. Both active and passive remote sensing has been used for ms 

measurement. Some of the approaches that use passive techniques of microwave remote 

sensing to measure soil moisture have been presented by Wigneron et al., 1998 and 

Jackson, 1993 in which the sensitivity of microwave remote sensing to dielectric 

properties of land surface is used to develop algorithms to map ms over extended areas. 

Passive microwave sensors are less sensitive to the surface roughness and thus used for 

monitoring soil moisture at a global level (Oki et al., 2000). Passive microwave sensors 

detect the naturally emitted radiations from the land surface that results in low spatial 

resolution. On the other hand, active microwave sensors such as Tropical Rainfall 

Measuring Mission Precipitation Radar (TRMMPR) measure the difference in power 

between transmitted and received radiation that is affected by ms. Albeit primarily 

designed to estimate vertical profile of rain, TRMMPR provides the surface backscatter 

measurements that can be related to the various characteristics of the land surface such 

as albedo, biomass, vegetation, and soil moisture. 

In this paper, an empirical model is developed that relates ms to TRMMPR 

backscatter (σ°) and Normalized Difference Vegetation Index (NDVI). σ° depends upon 

dielectric constant, vegetation density and roughness of the surface. Since dielectric 

constant of wet soils is greater than that of dry soils, this difference is reflected in σ° 
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measurements and used to measure ms. In the case of vegetated areas, the incident 

TRMMPR radiations are backscattered and reflected by the leaves in the vegetation 

canopy and are not able to provide the ground surface measurements. This effect of 

vegetation density and surface roughness is incorporated into the model by using NDVI. 

The model relates the volumetric ms in percentage (%) to σ°, measured in decibels (dB) 

and NDVI (unitless). The model is calibrated using soil moisture data available from the 

Soil Climate Analysis Network (SCAN). The model is point based model and its 

performance is assessed by comparing modeled ms to ground ms obtained from SCAN. 

This paper is organized as follows. Section II describes data used in this 

research. Section III presents the soil moisture model and model parameters. The 

comparison between estimated and observed ms is discussed in Section IV. Finally, in 

section V conclusions are presented.  

 

3.3. Data Description 

This section describes the datasets used in this research. TRMMPR 

specifications; available volumetric soil moisture content data; and characteristics of 

NDVI are described. The acquisition procedure for each of the dataset is also presented.  

 

3.4. Tropical Rainfall Measuring Mission Precipitation Radar 

TRMMPR is an imaging radar aboard Tropical Rainfall Measuring Mission 

(TRMM) launched by NASA in December, 1997. The main objective of TRMM 
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satellite is to provide information on rainfall distribution in the tropical and sub-tropical 

regions of the world (Kummerow et al., 1998). It provides three dimensional structure of 

rainfall along with the information on its distribution and intensity. TRMMPR operates 

in Ku-band with HH polarization. It has a horizontal resolution of 4.4 km and cross-

track scan angle between 0° and 17° with a swath width of 215 km. In August 2001, the 

height of TRMM satellite was increased from 350 km to 402 km to increase its mission 

life. This boost resulted in increase in horizontal resolution from 4.4 km to 5.0 km and 

swath from 215 km to 247 km for TRMM data. This has been accounted for by using 

the appropriate antenna footprints for the pre- and post- boost measurements. 

σ° depends on dielectric constant of the area under consideration and its surface 

characteristics such as vegetation density and surface roughness. Dielectric constant is a 

measure of soil moisture content and hence can be detected by σ°. However, apart from 

dielectric constant, vegetation density and terrain roughness also affect σ°. It is difficult 

to separate the effect of vegetation density and terrain roughness.  

TRMMPR orbital data is available for the tropical region lying within 36° N to 

36° S. This limits the coverage to Southern US. The backscatter images of the study area 

are produced from this data. The images are prepared for every 14 day interval with a 

moving window of 7 days. Backscatter image for the study area for first 14 days of year 

2000 is shown in Figure 6. The water bodies in the image are shown as white patches 

because of less backscatter from the smooth surface of the water body. Each pixel in the 

image corresponds to 4.4 km of the land surface.  
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Figure 6 Backscatter image for Southern US. 

 

3.5. Soil Moisture 

The ms data is obtained from Soil Climate Analysis Network operated by United 

States Department of Agriculture USDA and Natural Resources Conservation Service 

administered National Water and Climate Center. SCAN provides the information of 

various site locations across United States (US). There are currently more than 150 

SCAN sites spread across US. Each site provides hourly information on various 

variables such as soil temperature, precipitation, and soil moisture. 

There are forty seven SCAN sites in the Southern United States below 36° N 

latitude. These SCAN sites extend from Arizona in the west to Florida in the east 

covering New Mexico, Texas, Oklahoma, Arkansas, Mississippi, Alabama, Georgia and 

South Carolina. Figure 7 shows the spatial distribution of these SCAN sites. These sites 

represent diverse landuse categories. The various landuse categories, their 

characteristics, and the number of stations representing a given category are summarized 
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in Table 2. Although a few sites located in the western part of the region in Arizona and 

New Mexico, most of the sites are densely located in the Mississippi watershed where 

more than 80% of the landscape is covered with crop-producing fields. Some sites are 

spread across the south-eastern states. It is observed that the greenness of vegetation 

increases from west to east. This is due to the physical characteristics of the area where 

western region is mostly arid and semi-arid with scanty rainfall and east coast receives 

heavy rainfall.  

 

 

Figure 7 Spatial distribution of SCAN sites. 
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Table 2 Number of SCAN sites in each Landuse Category. 

Landuse Category Tree height Canopy cover  umber of SCA  

sites 

Closed Shrubland < 5 m Bush/shrub > 40% 3 

Wooded Grassland > 5 m 10% < tree canopy < 40% 6 

Grassland - Herbaceous cover 5 

Forest > 5 m Canopy cover > 60% 3 

Woodland > 5 m 40% < tree canopy < 60% 7 

Cropland - Crop producing fields 23 

TOTAL   47 

 

SCAN data consistent with the duration of time period of availability of 

TRMMPR data (1998-2008) is used. Each SCAN site provides hourly volumetric ms 

collected by Hydra Probe II SM sensor which measures the dielectric constant of soil at 

depths of 5, 10, 20, 51, and 102 cm. The data corresponding to the depth of 5 cm is used 

in this research. The Hydra Probe is a Frequency Domain Reflectometer. It consists of 

capacitance plates inserted in the soil medium forming a capacitor. The capacitance 

changes with the change in dielectric constant of the soil medium. Hence, any changes 

in the soil moisture content are reflected in the capacitance. With the change in 

capacitance induced by the soil moisture variation, the operating frequency of the circuit 

varies. This frequency variation is used to measure the soil moisture by the Hydra probe 

sensor. The hourly soil moisture data from Hydra probe sensor at a SCAN site is 

averaged over 14-day period with 7-day moving window to match the data for 

TRMMPR σ°. 
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3.6. Normalized Difference Vegetation Index 

NDVI is normalized difference of red band and infrared band reflectivities and is 

used to monitor vegetation (Tucker, 1979). It represents greenness of live vegetation in 

an area. It is highly correlated with other vegetation parameters like leaf area index and 

canopy cover and thus serves a good descriptor of vegetation discrimination (Gao et al., 

2002). High values that are close to 1.0 represent forests. From the data it is observed 

that the low positive values from 0.2 to 0.4 indicate the presence of shrubs and 

grasslands and values close to zero (-0.1 to 0.1) correspond to water.  

NDVI data is acquired from Earth Explorer website maintained by USGS. The 

14-day NDVI composites are available for time period 1990 to 2008 at 7-day time step. 

The composite images are created after the removal of atmospheric effects from 

aerosols and water vapor that interfere with the NDVI data. Some of the images with 

excessive noise produced by the clouds are removed from the analysis. 

 

3.7. Model Description 

σ
o
 depends on soil moisture, vegetation characteristics, and surface roughness of 

the land surface. This section describes an empirical model that relates σ
o
 to the soil 

moisture and vegetation density (represented by NDVI). The time series of σ
o
, ms and 

NDVI are analyzed to develop σ°-ms model.  

σ
o
 is a function of several parameters given by equation 3.1. 

σ
 � ��
λ� θ� �� ε� ƒ� �� Eqn. (3.1) 
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where λ is wavelength, θ is incidence angle, p is polarization, ε is dielectric constant, ƒ 

is surface roughness and V represents vegetation characteristics (FAOUN, 1989). The λ, 

θ, and p are radar observation parameters. Dielectric constant, surface roughness and 

vegetation type are land surface parameters that depend on water content in the soil, 

extent of corrugations on the surface and density of vegetation, respectively.  

TRMMPR measurements observed in Ku-band are sensitive to the dielectric 

properties of the soil surface. Water has ε of approximately 80 whereas for dry soils ε 

ranges from 4 to 8. This difference in ε for water and dry soil is used as the basis for 

detection of ms by σ° data.  

 

 

Figure 8 σ°-θ response for medium rough surface. 

 

The σ
o
 measurements are affected by θ of observation. A typical σ°

 
– θ for 

incidence angle range of 3 to 15 degrees is shown in Figure 8. The relationship between 

σ° and θ is not linear over the whole range of incidence angles. The relative contribution 

from surface and vegetation scattering depends on the vegetation density and is reflected 
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in the slope of σ°- θ response that for TRMMPR backscatter could be approximated as 

linear for angles between 3° and 15°. The σ°- θ is modeled as shown in equation 3.2. 

�°
�� � � 	 � � 
θ��θ���� Eqn. (3.2) 

where θref is the reference angle, A (dB) is the backscatter normalized to θref and B 

(dB/°) is the slope of the line fit. θref is chosen to be 10° at which σ° has high sensitivity 

to soil moisture (Ulaby et al., 1986). In this research, multiple orbit σ°
 
measurements are 

used to prepare images of backscatter normalized to 10° (A).  

The soil moisture content increases the σ
o
 which results in increase in A. A is 

also affected by the vegetation and roughness of the surface. It is difficult to decouple 

the effects of surface roughness and vegetation (Bindlish et al., 2003). Dense vegetation 

attenuates the incident electromagnetic energy and reduces the sensitivity to the 

underlying soil characteristics. This effect is more severe when the vegetation canopy is 

wet. The Ku-band wavelength (2.2cm) is comparable to the leaf size in the canopy and 

thus has higher attenuation by the canopy.  

Figure 9 shows yearly variation in A, ms, and NDVI at a site characterized by 

low NDVI. The A response shown in Figure 9(a) follows a seasonal pattern of highs and 

lows. Higher A values are observed in rainy and winter seasons (Aug- Dec). Lower A 

values are observed in summer months from May to Jul. The variation in soil moisture 

for the same duration is shown in Figure 9(b). The ms values are higher throughout the 

year except for summer months from May-Jul. In summers, the soil dries through 

evaporation, plant consumptive use, and percolation, thus reducing the backscatter. The 
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backscatter contribution in this case is mainly from the geometrical characteristics of the 

surface. From both the figures it is seen that the ms behavior is well captured by A 

values. The intermittent highs and lows in ms from Aug-Dec are also seen in A response. 

The scatterplot of A values and ms is shown in Figure 9(d). A high correlation of 0.79 

shows the ability of A to capture ms values. 

The variation in NDVI for the same site and same duration is shown in Figure 

9(c). Typical NDVI values in this site (0.3-0.45) represent croplands. The peak in the 

NDVI values is observed in the months of May and Aug. NDVI variation is reflected in 

A response with correlation of 0.42 between A and NDVI as shown in Figure 9(e).  

 

 

Figure 9 Time series plot of (a) A, (b) Soil Moisture, and (c) NDVI at site with low 

NDVI. (d) Scatterplot of A and ms, and (e) Scatterplot between A and NDVI. 
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Figure 10 Time series plot of (a) A, (b)  Soil Moisture, and (c) NDVI at site with high 

NDVI. (d) Scatterplot of A with ms, and (e) Scatterplot between A and NDVI. 

 

The annual behavior of A, ms, and NDVI for a site characterized by high 

vegetation is shown in Figure 10. The time series of A and ms is shown in Figure 10(a) 

and Figure 10(b), respectively. It is seen that the A response follows the variation in ms. 

Both A and ms show high values throughout the year except for the months May, Aug, 

and Oct. The scatterplot of A and ms reveals a high correlation of 0.78 between A and 

ms. However, NDVI variation shown in Figure 10(c) shows the variation in NDVI 

opposite to A response of the site. This is due to the high average values of NDVI (0.5-

0.8) representing dense vegetation. In case of dense vegetation, the backscatter gets 

attenuated by the leaves of the vegetation which reduces the penetration depth of 

incident waves. A negative correlation of -0.73 between A and NDVI is observed and 

shown in Figure 10(e). 
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3.8. Soil Moisture Model 

The soil moisture model expresses ms in terms of A and normalized NDVI. A 

captures the backscatter of the land surface that represents the dielectric nature of the 

surface and vegetation characteristics above it. The vegetation on the land surface is 

represented by NDVI. Low vegetated areas have low NDVI values whereas; highly 

vegetated areas are represented by high NDVI values. ms is related to A and NDVI as 

shown in equation 3.3. 

��
�� ����� � µ� 	 � � � 	 � � 
���� �  !"#$� Eqn. (3.3) 

where, ms is soil moisture in %, A is backscatter measured in decibels (dB) normalized 

to 10° and NDVI is a unitless index with µndvi being the average value of NDVI over the 

training period. µs denotes the modeled average value of soil moisture for a SCAN site 

under consideration. T and P are the weights of A and NDVI, respectively, and 

represent the dependence of modeled soil moisture on A and NDVI, respectively. µs, T, 

and P are the calibration parameters in (%), (%/dB), and (%), respectively. 

 

3.9. Calibration and Validation 

The calibration of the model aims at obtaining the model parameters‒ µs, T, and 

P. ms, A and NDVI data over a given SCAN site are used to compute the model 

parameters by minimizing the error to obtain ms from A and NDVI. The model is 

calibrated using 75% of the time series data and model parameters µs, T, and P are 

computed. These model parameters are then used to estimate ms for the remaining 25% 
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of the data. The validation is performed by comparing the ms values obtained from the 

model with the observed ms values. The correlation coefficient (R), root mean square 

error (rmse), and mean absolute error (mae) are computed between observed and 

modeled soil moisture and the accuracy of the model is assessed.  

 

3.10. Results and Discussions 

The soil moisture model is applied to all the SCAN sites in Southern US and the 

sites are grouped on the basis of their landuse type to assess the behavior of the model 

on individual landuse. The ensuing figures show a time series plot of observed and 

modeled soil moisture, scatterplot, and non-exceedance probability plot for 

representative sites for each landuse. The ensemble plots of scatterplot, non exceedance 

probability, and boxplot distribution for observed and modeled soil moisture for all the 

sites in a given landuse are also shown. 

The model results for sites in woodland are shown in Figure 11. Woodland is 

land where tree heights exceed 15 ft and tree canopy cover lies between 40% and 60%. 

Figure 11(a) shows the time-series plot of observed ms and modeled ms for 2 years of 

testing data at a representative site of woodland. The modeled values of ms compare 

well with the observed values of ms. The peaks in the time series of ms are introduced by 

events of rainfall that increase the soil water content in the soil. After a rainfall event, 

the soil moisture is lowered due to the process of evaporation, evapo-transpiration, and 

vegetation growth. These highs and lows in the soil moisture are well captured by the 
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model. Figure 11(b) shows the scatterplot between observed and modeled ms. The points 

that are located above the bisector line indicate over-estimation of soil moisture whereas 

points that fall below the line are under-estimated values of soil moisture. The model 

works reasonably well with R=0.81 and RMSE=4.16%. It is seen in Figure 11(b) that 

the model over-estimates the ms where observed ms is below 30% and under-estimates 

the ms for observed ms values that are above 30%. Figure 11(c) shows the plot of 

probability of non-exceedance of error. The plot shows the percentage of the data 

samples as a function of the probability of their absolute modeling error on the y-axis 

being less than or equal to the values on the x-axis. According to the plot, 79% of the 

data points have an error of 5% or less which increases to 99.7% of the data points 

having an error of 10% or less. 

Figure 11(d-f) shows the ensemble plots for the combined model performance of 

all 7 woodland sites. The sites in this area are densely vegetated (NDVI ranges from 

0.59 to 0.71) and have varying degrees of soil moisture ranging from 1.2% to 40.9%. 

The model results for woodland sites show promising results. Figure 11(d) shows the 

saturation of all the data points for sites located in woodland along the 45° line with 

high correlation 0.89 and root mean square error of 5.0%. Figure 11(e) shows the non-

exceedance probability plot which reveals that 74% of the soil moisture estimates have 

an error of 5% and less whereas, 95% of the estimates has 10% or less error. Figure 

11(f) compares the distributions of modeled and observed soil moisture using boxplot. 

The boxplot describes the median of both the datasets as the horizontal line in the box. 
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The 25
th
 and 75

th
 percentile of the data is defined by the lower and upper bounds of the 

box, respectively. The whisker at the lower end of the data is 5
th
 percentile whereas 

whisker at the upper end is 95
th
 percentile. It can be seen from the boxplot that the 

majority of the values, lying within the box of 25
th
 and 75

th
 percentile match well 

between observed and modeled soil moisture. However, the modeled ms is unable to 

capture very dry values (close to zero) that are seen in the distribution of observed ms. 

The model also does not work well in the wet conditions since the model over-estimates 

the ms values for high observations close to 40%. 

 

 

Figure 11 Model results for Woodland. (a) Time series plot for observed and modeled 

soil moisture. (b) Scatterplot of observed and modeled soil moisture. (c) Non-

exceedance probability curve of mean absolute error. (d) Scatterplot of all SCAN sites 

that lie in Woodland. (e) Non-exceedance probability plot of mean absolute error of all 

the SCAN sites that lie in Woodland. (f) Box-plot of the observed and modeled soil 

moisture for the data points in the group. 
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A similar analysis is performed over wooded grassland and the results are shown 

in Figure 12. Wooded grassland is characterized by high NDVI values from 0.59 to 0.67 

indicating dense vegetation. However, the tree canopy cover for wooded grassland is 

lesser than woodland and lies between 10% and 40%. The tree heights in wooded 

grassland exceed 15 ft as in woodland. It has varying degree of ms ranging from 1.4% to 

42.5%. Figure 12(a) shows the time series plot between observed and modeled soil 

moisture for 3 years of testing data at a representative site of wooded grassland. The 

beginning of the year 2006, 2007, and 2008 show that the model under-estimates the ms 

values. This under-estimation of the points is also reflected in Figure 12(b) where most 

of the points lie below the 45° line. Root mean square error is 6.8% and correlation is 

0.75. The non-exceedance probability curve in Figure 12(c) shows that 88% of the soil 

moisture estimates have an error of 10% or less.  

The combined results of the model applied to 6 wooded grassland sites are 

shown in Figure 12(d-f). Relatively more data points fall below the 45° line as shown in 

Figure 12(d). The non-exceedance probability plot in Figure 12(e) reveals that the model 

gives a 10% or less error for 94% of the estimates. The boxplot distribution in Figure 

12(f) reveals that unlike woodland, where the model does not capture the ms values 

close to 40%, in wooded grassland, the 95
th
 percentile and 75

th
 percentile of modeled 

and observed ms match with each other quite well. 

 



www.manaraa.com

49 

 

 

Figure 12 Model results for Wooded Grasslands. (a) Time series plot for observed and 

modeled soil moisture. (b) Scatterplot of observed and modeled soil moisture. (c) Non-

exceedance probability curve of mean absolute error. (d) Scatterplot of all SCAN sites 

that lie in Wooded Grassland. (e) Non-exceedance probability plot of mean absolute 

error of all the SCAN sites that lie in Wooded Grassland. (f) Box-plot of the observed 

and modeled soil moisture for the data points in the group. 

 

The performance of the model in the area of grassland is shown in Figure 13. 

Grassland is covered with continuous herbaceous cover consisting of less than 10% tree 

canopy cover. Figure 13(a) shows the variation between observed and modeled soil 

moisture values for 2 years of testing period. The model works well and has captured 

the variation in soil moisture well. However, the model is unable to represent the 

decrease in soil moisture observed in the middle of the year (summer) 2007 and 2008. 

The data points in Figure 13(b) are saturated near the 45° line indicating a good 

performance of the model. Model performance parameters for the site are R=0.80 and 

root mean square error=7.8%. This high error in root mean square error is attributed to 

the inability of the model to describe the low soil moisture values observed at the site. 
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The non-exceedance probability plot in Figure 13(c) shows that 45% of the data has 5% 

or less error in the soil moisture estimates which increases to 10% or less error for 80% 

of the estimates.  

The combined result of applicability of model to all the 5 sites in grassland is 

summarized in Figure 13(d-f).  The sites in grassland have large extent of variability in 

terms of average soil moisture content. Soil moisture values lie between 0.4% and 

43.6%. The NDVI values in grassland are low and range from 0.26 to 0.33 except for 

two points where it in the range from 0.58 to 0.63. Figure 13(d) shows the scatterplot of 

observed and modeled soil moisture for all grassland sites. Unlike woodland, the model 

works well at ms values close to 40%. Figure 13(e) shows the non-exceedance 

probability plot for grassland. It can be inferred from the figure that 95% of the soil 

moisture estimates have an error of 10% or less. The modeled soil moisture data points 

in box-plot are shown in Figure 13(f). Except for the extremely low soil moisture 

values, the model is able to estimate observed soil moisture well. 
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Figure 13 Model results for Grassland. (a) Time series plot for observed and modeled 

soil moisture. (b) Scatterplot of observed and modeled soil moisture. (c) Non-

exceedance probability curve of mean absolute error. (d) Scatterplot of all SCAN sites 

that lie in Grassland. (e) Non-exceedance probability plot of mean absolute error of all 

the SCAN sites that lie in Grassland. (f) Box-plot of the observed and modeled soil 

moisture for the data points in the group. 

 

The Great Plains of Southern US consists of extended croplands where more 

than 80% of the land is covered by crop producing plants. Almost half of the SCAN 

sites studied in this research lie in croplands. A representative site in cropland is shown 

in Figure 14(a-c). The model works well at this site with R=0.71 and root mean square 

error=4.0%. Most of the data points at this site are under-estimated. The non-exceedance 

probability plot in Figure 14(c) shows that 96% of the data points have an error of 10% 

or less.  

The model results for a combined analysis of all the 23 cropland sites are shown 

in Figure 14(d-f). Figure 14(d) shows the scatterplot of observed and modeled soil 

moisture. The majority of the points are along the 45° line with some over-estimation in 
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drier conditions of soil moisture. The absolute error non-exceedance probability curve is 

shown in Figure 14(e). The plot shows that 69% of the estimates have an error of 5% or 

less which increases to 10% or less for 90% of the estimates. The distribution of 

observed and modeled ms is shown in Figure 14(f). The modeled soil moisture captures 

the median and 75
th
 percentile of data points very well. The wide spatial distribution of 

23 sites spread across Southern US with varying degree of NDVI values and soil 

moisture contents is the reason for 10% or less error for 90% of the estimates.  

 

 

Figure 14 Model results for Cropland. (a) Time series plot for observed and modeled 

soil moisture. (b) Scatterplot of observed and modeled soil moisture. (c) Non-

exceedance probability curve of mean absolute error. (d) Scatterplot of all SCAN sites 

that lie in Cropland. (e) Non-exceedance probability plot of mean absolute error of all 

the SCAN sites that lie in Cropland. (f) Box-plot of the observed and modeled soil 

moisture for the data points in the group. 

 

The model results for sites in closed shrubland are shown in Figure 15. Closed 

shrubland is land covered with shrubs. The shrubs do not increase more than 15 ft in 
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height. Closed shrubland sites lie in the western part of Southern US that comprises of 

arid and semi-arid regions and are characterized by low soil moisture throughout the 

year with average soil moisture ranging from 4.8% to 6.2% and low NDVI values from 

0.29 to 0.35. The modeled soil moisture compares well with observed soil moisture as 

seen in Figure 15(a). The representative site is dry with ms values less than 20%. The 

model works well with R=0.60 and root mean square error=3.52%. The plot for the site 

in Figure 15(c) shows that all the data points at the site have an absolute error of less 

than 8%.  

Figure 15(d-f) shows the combined model performance of all the 3 sites that lie 

in closed shrubland. The relative dryness of the area is seen in Figure 15(d). The soil 

moisture does not increase more than 20% at any time of the year for any site. The non-

exceedance probability plot for these sites is shown in Figure 15(e). According to the 

plot, 84% of the data points have an error of 5% or less and 100% of the data points 

having less than 8% error. Figure 15(f) compares the distributions of modeled and 

observed soil moisture using boxplot. It is seen that the model does not perform well in 

extreme dry situations.  
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Figure 15 Model results for Closed Shrubland. (a) Time series plot for observed and 

modeled soil moisture at a representative site. (b) Scatterplot of observed and modeled 

soil moisture at a representative site. (c) Non-exceedance probability curve of mean 

absolute error at a representative site. (d) Scatterplot of group of SCAN sites that lie in 

Closed Shrubland. (e) Non-exceedance probability plot of mean absolute error of group 

of sites that lie in Closed Shrubland. (f) Box-plot of the observed and modeled soil 

moisture for the data points in the group. 

 

Model results for sites in the forest (deciduous + mixed) are shown in Figure 16. 

Figure 16(a) shows the temporal variation of soil moisture for observed and modeled 

soil moisture for 2 years of testing data. Though the model compares well, it performs 

poorly where soil moisture drops to low values. This over-estimation of the low soil 

moisture values is indicated in Figure 16(b) where most of the points fall above the 45° 

line. The non-exceedance probability plot shows that 91% of the estimates have an error 

of 10% or less. 

For combined group results, the model works well in forested areas as well. 

Figure 16(f) shows the box-plot of the modeled and observed soil moisture data points. 
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The distributions of observed and modeled ms show that the model is able to capture the 

overall behavior of the soil moisture in the region. The non-exceedance probability 

curve shown in Figure 16(e) describes that 69% of the estimates show an error of less 

than 5% which increases to 92% of the estimates that show an error of 10% or less.  

 

 

Figure 16 Model results for Forest. (a) Time series plot for observed and modeled soil 

moisture. (b) Scatterplot of observed and modeled soil moisture. (c) Non-exceedance 

probability curve of mean absolute error. (d) Scatterplot of all SCAN sites that lie in 

Deciduous Forest. (e) Non-exceedance probability plot of mean absolute error of all the 

SCAN sites that lie in Deciduous Forest. (f) Box-plot of the observed and modeled soil 

moisture for the data points in the group. 

 

The model relates soil moisture to TRMMPR backscatter measurements and 

NDVI quite well over diverse type of landuse. A summary of the model results for sites 

comprising each landuse across the Southern US is listed in Table 3. The model works 

best for woodland. For landuse characterized by dense vegetation, the performance of 

the model decreases due to attenuation of incident microwave radiations by the 
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vegetation canopy leaves. The dense vegetation canopy causes volume scattering of 

incident wave and thus results in lesser contribution from the underlying soil surface. It 

is observed that the model does not work well at low soil moisture values. With the 

exception of woodland for which the model over-estimates the high ms values close to 

40%, the model works well over high ms values in other landuse types.  

 

Table 3 Summary of model statistics for each landuse. 

Landuse  umber 

of sites 

R rmse Percentage of 

estimates with 

error < 5% 

Percentage of 

estimates with 

error < 10% 

Woodland 7 0.89 5.0% 74% 95% 

Wooded 

Grassland 

6 0.86 5.6% 65% 94% 

Grassland 5 0.88 5.5% 66% 95% 

Cropland 23 0.83 6.3% 69% 90% 

Closed 

Shrubland 

3 0.45 3.5% 84% 100% 

Forest 3 0.79 5.6% 69% 93% 

 

3.11. Conclusions 

A simple linear model that relates soil moisture to TRMMPR backscatter 

measurements is presented. The dielectrical constant of the land surface affects 

backscatter and is used to measure water content of the soil. The physical properties of 

the land surface that affect backscatter are surface roughness, topography, and 

vegetation cover. The vegetation cover in the model is accounted for by using NDVI. 

The effects of surface roughness and topography are not taken into account. The model 

performs well and is able to estimate the soil moisture values reasonably well.  
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The model works well in woodland, wooded grassland, and grassland where the 

combined correlation for all the data points is 0.89, 0.86, and 0.88, respectively. The 

non-exceedance probability plot for these three landuse types reveals that 95% of the 

estimates have an error of 10% or less which is a good measure of the model 

performance. The model works best for closed shrubland for which the non-exceedance 

probability plot shows that 100% of the soil moisture estimates have 10% or less error. 

This is because the closed shrubland sites are mainly located in the arid western part of 

the Southern US. This area is characterized by bare ground or scanty vegetation. The 

incident radiation penetrates through the vegetation canopy cover and provides 

backscatter from underlying surface. 

This research provides an alternate method of measuring soil moisture. The 

method provides an alternative to installation of measurement instruments at each site 

and provides the soil moisture measurements over a wide extent of land. This research 

provides an insight into measurement of soil moisture using space-borne remote 

sensing. The research can help scientists, engineers, and policy-makers to understand 

the comprehensive spatial and temporal variability of soil moisture without having the 

need to measure soil moisture at individual sites. Soil moisture measurements over a 

large extent of area can provide the opportunity to understand various hydrologic 

processes and manage scarce water resources in an efficient manner. 
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CHAPTER 4                                                             

ESTIMATION OF WATER STAGE OVER WETLANDS OF SOUTH FLORIDA 

USING TRMMPR OBSERVATIONS 

 

4.1. Abstract 

Everglades are a critical component of the regional hydrological cycle in South 

Florida. Anthropogenic activities in this region have deteriorated the wetland ecosystem 

and efforts are on-going to restore and preserve it. Seasonal and interannual changes in 

water stage result in saltwater intrusion and inhibit ecosystem conservation measures. 

Hence, there is a need to monitor water stage in wetlands. Microwave remote sensing 

with its sensitivity to surface characteristics provides an opportunity to measure changes 

in water stage from space. Space-borne remotely sensed data can provide a 

comprehensive spatio-temporal distribution of water stage over an area thereby 

eliminating the need to monitor water stage separately at each measurement site. 

This research relates water stage measurements (ws) to Tropical Rainfall 

Measuring Mission Precipitation Radar backscatter (σ°). σ° response to partially 

exposed vegetation is used as the basis of the model. Variations in the water depth 

change the amount of exposed vegetation canopy that is reflected in the σ° 

measurements. An empirical linear model is developed that expresses ws in terms of σ°. 

The impact of vegetation on the model is studied by examining model performance over 

various landcovers.  
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The ws-model is applied to stage data on 114 sites operated by South Florida 

Water Management District. Eleven year data (1998 to 2008) is used for this research. 

The model is calibrated using 75% of the time period of data to estimate the model 

parameters; and validated over the remaining 25% of the time period.  

The estimated water stage measurements from the model are compared with 

observed measurements for various landcovers. The model performance is assessed by 

comparing correlation coefficient (R), root mean square error (rmse), and non-

exceedance probability of difference between observed and modeled water stage 

measurements. The model works reasonably well in the regions with tree heights greater 

than 15 ft e.g., over woodlands, R=0.98 and rmse=0.64 ft. Other relatively shorter 

height vegetation landcovers such as cropland (R=0.90, rmse=0.60 ft) and grassland 

(R=0.97, rmse=0.66 ft) also exhibit reasonable performance of the model. The model 

performance is linked to the vegetation features with varying submergence from 

changes in water stage. Thus, microwave remote sensing signal over partially inundated 

vegetation can provide spatio-temporal characteristics of water stage. This research 

provides a new insight into measurement of water stage using spaceborne remote 

sensing techniques. 

 

4.2. Introduction 

South Florida contains thousands of lakes and swamps. 1.2 million hectares of 

South Florida consists of wetlands (Doren et al., 1999). Wetland is an area where the 
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soil is saturated seasonally or perennially resulting in shallow pools of standing waters. 

Wetlands support rich biodiversity of endangered and threatened species (Kushlan et al., 

1990; Fennema et al., 1994). Plant life and communities found in the wetlands consists 

of mangroves, water lilies, cypress, and gum whereas animal life comprises of various 

amphibians, reptiles, birds and furbearers. The study of wetlands is termed as 

Paludology (Gotkiewicz, 2005) which is of significant interest to scientists, biologists, 

and environmentalists.  

Existence of wetlands in South Florida region is beneficial through improved 

water quality, and recharging of the ground aquifer (Daily et al., 1997). Wetlands have 

the ability to store floodwater and protect shoreline (Brande 1980). These wetlands are 

hydrologically closed and play an important role in flood control, contaminant 

attenuation, and carbon sequestration (McAllister et al., 2000; Pant et al., 2003). These 

wetland play an important role in the regional ecology and hydrological cycle. 

Understanding hydrological phenomenon in wetland is of utmost importance as 

it helps in maintaining ecological functions and protecting economic benefits of the 

region (Ozesmi and Bauer, 2002). The water bodies and lakes in South Florida 

experience significant changes in the seasonal and interannual cycle of water stage 

because of highly variable climate. It is important to understand the changes in water 

stage as it alters the water flow path between surface and ground water (Johnson et al., 

2004). Saltwater intrusion is a result of excessive decrease in water stage where salty 

sea water flows into the wetland ecosystem. Water stage variability is the chief cause of 
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changes in salinity in the wetlands (Gorham et al., 1983) which modifies the vegetation 

patterns in the region. Any change in the vegetation patterns of wetlands affect the food 

supply and nesting patterns of waterfowl (Covich et al., 1997). Hence, there is a need to 

monitor water stage in wetlands. However, due to wide expanse of geologically 

complex wetlands and lack of hydrological surveys, most of the lakes especially small 

lakes are barely monitored (Zhang, 2008). Moreover, most of the water stages 

measuring stations in South Florida are placed near water control structures which do 

not provide much insight into the water level variations in the wetlands. Hence, there is 

a need to obtain a comprehensive spatio-temporal distribution of water stage using an 

alternative method. 

Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (TRMMPR) 

has been observing land surface backscatter (σ°) since 1998. σ° is sensitive to dielectric 

and physical characteristics of the target area which is mostly attributed to the water 

content and vegetation, respectively of the target area. Over standing water, smooth 

surface results in specular reflection of the incident radiations resulting in very low 

backscatter. On the other hand, backscatter from partially inundated vegetation is 

dependent on the physical characteristics of the canopy exposed above water. The 

density of vegetation exposed above the water surface is related to backscatter from the 

surface. 

In this paper, a research is conducted to estimate water stage (ws) measurements 

using space-borne remote sensing. A model is developed that relates ws measurements to 
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TRMMPR Ku-band (wavelength of 2.2 cm) backscatter. This backscatter depends on the 

volume scattering characteristics of exposed vegetation. The effect of vegetation on 

model performance is investigated by incorporating into the model, the Normalized 

Difference Vegetation Index (NDVI) as a measure of greenness of the vegetation. 

This paper is organized as follows. Section II describes the study area. This is 

followed by data description in Section III. Section IV presents the ws model and model 

parameters. The comparison between estimated and observed ws is discussed in Section 

V. Finally, in section VI conclusions are presented.  

 

4.3. Study Area 

Geographically, South Florida is defined by water since it is surrounded by 

Atlantic Ocean on one side (east) and Gulf of Mexico on the other two sides (west and 

south). It consists of thousands of small lakes and other water bodies. The largest lake in 

the region is Lake Okeechobee that occupies 730 square miles of the area. It is a shallow 

lake with average depth of 9 feet. Generally lake levels are maintained between 13 to 15 

feet of National Geodetic Vertical Datum (NGVD).  

The Everglades Agricultural Area (EAA) lies to the immediate south of the Lake 

Okeechobee. Many canals run through the EAA originating from the Lake Okeechobee 

to the Atlantic Ocean as shown in Figure 17. Adjacent to EAA are the Water 

Conservation Areas (WCAs) that store the surplus water in the region. This region has a 

large number of manmade levees and water control structures. There is a complex 
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interaction between manmade and natural features in this region. Everglades National 

Park that lies to the west of WCAs is covered mainly with the tropical and sub-tropical 

forests and preserver the natural environment of Everglades.  

The South Florida region is characterized by heavy rainfall of about 4-5 ft/yr that 

results in large volumes of surface water. Most of this water evaporates, infiltrates or 

drains to the ocean. One of the major economic resources of the region is agriculture 

that is abundant in the interiors of South Florida. The climate of South Florida is 

favorable to a variety of crops throughout the year. Sugarcane and citrus fruits are the 

major agricultural produce of the region. These large scale agricultural practices in 

South Florida started in 1920 after draining large volumes of peat soil from the region. 

This increased the agricultural water demand in the region. This water demand was 

further increased with growing human population in the surrounding areas of Lower 

East Coast.  

South Florida faces a common problem of saltwater intrusion. The region 

consists of various canals that drain from interiors of South Florida to nearby Gulf of 

Mexico or Atlantic Ocean. These canals lower the water table causing the intrusion of 

seawater. During dry season and periods of drought, the seawater moves inland through 

the canals and infiltrates into the aquifers. Lowering of ground water table creates a 

negative head and allows the seepage of saltwater into the aquifers. However, the 

problem of uncontrolled saltwater intrusion has been addressed by construction of 

various control structures near the outlets of the drainage canals. These controls are 
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opened to release excess of water during rainy seasons to avoid flooding in the region. 

During the dry season, control gates are closed to prevent the intrusion of seawater 

through canals. South Florida Water Management District (SFWMD) is a government 

agency that operates the water control structures in South Florida to prevent flooding 

and regulate the water flow. In certain areas, mainly WCAs the operation of the flood 

control structures result in the accumulation of water in excess of natural background 

levels (Wdowinski et al., 2008). Therefore, it becomes important to monitor water stage 

in order to understand the hydrological flow in wetlands. 

 

 

Figure 17 Geographical features of South Florida (Source: SFWMD website). 

 

There are 804 SFWMD stage measuring sites in South Florida. However, 115 sites that 

lie in the wetland regions of ENP, WCAs, and Big Cypress are selected for study. The 
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location of these sites is shown in Figure 18. Out of these 123 sites, 45 of them are 

located in WCAs, 41 lie in ENP, and 37 lie in Big cypress. 

 

 

Figure 18 SFWMD Stage measuring sites in the study areas- ENP, WCAs, and Big 

Cypress. 

 

4.4. Data Description 

This section describes the datasets used in this research. The Tropical Rainfall 

Measuring Mission (TRMM) specifications, measurement of water stage and 

characteristics of Normalized Difference Vegetation Index (NDVI) are described. The 

acquisition procedure for each of the dataset is also presented.  

 

4.5. Tropical Rainfall Measuring Mission Precipitation Radar 

The main objective of TRMM satellite is to provide information on rainfall 

distribution in the tropical and sub-tropical regions of the world (Kummerow et al., 
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1998). It provides three dimensional structure of rainfall along with the information on 

its distribution and intensity. TRMMPR operates in Ku-band with HH polarization. It 

has a horizontal resolution of 4.3 km and cross-track scan angle scanning between 0° 

and 17° with a swath width of 215 km. In August 2001, the height of TRMM satellite 

was increased from 350 km to 402 km to increase the mission life. This boost resulted in 

increase in horizontal resolution from 4.3 km to 5.0 km and swath from 215 km to 247 

km for TRMM data. This change has been accounted for in the computation of σ° by 

changing the antenna footprints accordingly. 

Figure 19 shows the conceptual behavior of TRMMPR incident radiation over 

inundated areas with exposed and submerged vegetation. σ° depends on the amount of 

the partial submergence of vegetation. In the areas with high water stage (submerged 

vegetation), the water surface is typically smooth which results in specular reflection of 

the incident radiation from TRMMPR. The specular reflection results in low or no 

backscatter. It is noted that for nadir (vertical) view, i.e. θ=0° (not considered in this 

research), the specular reflection would be directed back to the sensor. In the areas 

where height of vegetation is greater than the water stage, the backscatter signal depends 

on the amount of submergence of vegetation. This principle is used in the research to 

estimate the effect of water stage on σ° measurements. 
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Figure 19 Behavior of TRMMPR incident radiation over inundated areas. 

 

TRMMPR orbital data is available for the tropical region lying within 36° N to 

36° S. The images of the study area are produced from this data for 14 day intervals 

with a moving window of 7 days. Each pixel in the image corresponds to 2 km of the 

land surface.  

 

4.6. Water Stage 

ws data is obtained from South Florida Water Management District (SFWMD) 

database DBHYDRO. SFWMD provides the information of various site locations across 

South Florida. There are currently more than 700 water stage measuring sites spread 

across Southern Florida. Each site provides daily information on various variables such 

as precipitation and water stage. 

The data from SFWMD’s database DBHYDRO sites is obtained for eleven years 

from 1998 to 2008. The hourly water stage measurement at a site is averaged over 14-
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day period with 7-day moving window to match the temporal resolution of the 

TRMMPR backscatter.  

 

4.7. Normalized Difference Vegetation Index  

NDVI is normalized difference of red band and infrared band reflectivities and is 

used to monitor vegetation (Tucker, 1979). It is a numerical index that represents 

greenness of vegetation in an area. It is highly correlated with other vegetation 

parameters like leaf area index and canopy cover and thus serves as a good descriptor 

for vegetation discrimination (Gao et al., 2002). High values that are close to 1.0 

represent temperate and tropical rainforests. From the observation of data it is seen that 

low positive values from 0.2 to 0.4 indicate the presence of shrubs and grasslands.  

NDVI data is acquired from Earth Explorer website maintained by USGS. The 

14-day NDVI composites are available for time period 1990 to 2008 at 7-day time step. 

There are 52 NDVI composites for each year obtained at a temporal resolution of 14 

days with a 7-day moving time window. Some of the images with excessive noise 

produced by the clouds were removed from the analysis. 

 

4.8. Model Description 

σ
o
 depends on vegetation characteristics, moisture content, and surface 

roughness of the land surface. This section describes an empirical model that relates 

water stage to σ°.  
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σ°  is a function of several parameters given by equation 4.1. 

σ
 � ��
λ� θ� �� ε� ƒ� �� Eqn. 4.1 

where λ is wavelength, θ is incidence angle, p is polarization, ε is dielectric constant, ƒ 

is surface roughness and V represents vegetation characteristics. The λ, θ, and p are 

radar observation parameters. Dielectric constant, surface roughness and vegetation type 

are land surface parameters that depend on water level, extent of corrugations on the 

surface and density of vegetation, respectively.  

 

 

Figure 20 σ°-θ response at a site with low NDVI. 

 

σ
o
 measurements are affected by incidence angle (θ) of observation. A typical σ°

 

– θ plot for incidence angle range of 3 to 15 degrees is shown in Figure 20. The relative 

contribution from surface and vegetation scattering depends on the vegetation density 

and is reflected in the slope of σ°- θ response that for TRMMPR backscatter is 

approximated to be linear for angles between 3° and 15°. The σ°- θ is modeled as shown 

in equation 4.2. 
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�°
�� � � 	 � � 
θ��θ���� Eqn. 4.2 

where θref is the reference angle, A (dB) is the backscatter normalized to θref and B 

(dB/°) is the slope of the line fit. θref is chosen to be 10°. In this research, multiple orbit 

σ°
 
measurements are used to prepare images of backscatter normalized to 10°. 

A depends on the characteristics of the water surface. ws is related to A as shown 

in equation 4.3. 

%�
�� � µ� 	 � � � Eqn. 4.3 

where, ws is water stage in ft. µs and T are the calibration parameters in (ft) and (ft/dB) 

respectively. µs denotes the modeled average value of water stage for the site under 

consideration. T is a weighing factor describing the linear relationship with normalized 

backscatter. 

Figure 21 shows the backscatter from vegetation in bands‒ X (λ= 3 cm), C (λ= 6 

cm), and L (λ= 25 cm). As the wavelength increases, the penetration of incident 

radiation into the vegetation increases and backscatter has greater contribution from the 

underlying surface. In case of water surface without any vegetation cover, the water’s 

smooth surface results in specular reflection thus producing low backscatter. Backscatter 

increases with lowering of water level due to increase in the exposure of the vegetation 

above water.  
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Figure 21 Backscatter from vegetation in bands X, C, and L (Iisaka et al., 1998). 

 

The calibration of the model aims at obtaining the model parameters‒ µs and T. 

For every site, the ws and A data are used to compute the model parameters by 

minimizing the error to obtain ws from A. The model is calibrated using 75% of the time 

period to obtain model parameters µs and T. These model parameters are used to 

compute ws for the remaining 25% of the data. The validation process comprises of 

comparing the ws values obtained from the model with the observed ws values. The 

correlation coefficient (R), root mean square error (rmse), and non-exceedance 

probability are computed between observed and modeled water stage and the accuracy 

of the model is assessed.  

 

4.9. Results and Discussions 

The water stage model is applied over South Florida at 114 locations distributed 
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in 6 major landuse types i.e. woodland, wooded grassland, closed shrubland, open 

shrubland, grassland, and cropland. The model results for each landuse type are reported 

in this section. The model behavior over a representative site of the landuse is discussed 

with the help of time series plot of observed and modeled water stage. The scatterplot 

and non-exceedance probability plot of absolute error is also presented for a 

representative site of each landuse. This is followed by plots of scatterplot, non-

exceedance probability plot, and boxplot distribution for combined data in each landuse 

type. 

Figure 22 shows the results of the water stage model applied to woodland. 

Figure 22(a) shows the time series plot of observed and modeled water stage for 3 years 

of testing period. The highs and lows in water stage are caused by rainfall events or 

operation of control gates in the region. The model is able to capture the variation in 

water stage reasonably well. It follows the highs and lows in the water stage except for 

summer months when the model over-estimates the low values of water stage. Figure 

22(b) shows the scatterplot of observed and modeled water stage with R=0.93 and root 

mean square error=0.70 ft. Over-estimation of stage is indicated by the data points lying 

above the 45° line and points falling below the line indicate under-estimation of the 

water stage. The over-estimation of water stage is evident in Figure 22(b). Figure 22(c) 

shows the non-exceedance probability on the horizontal axis and corresponding absolute 

error on the vertical axis. It can be seen from the figure that 59.7% of the water level, 

estimated by the model, have an error of 0.5 ft or less which increases to 85.8% for an 
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error of 1 ft or less. Woodland is characterized by tall vegetation (greater than 15 ft). 

The TRMMPR backscatter successfully captures the variation in exposed vegetation 

brought about by rise and fall of water stage in the area. In order to analyze the behavior 

of model in woodland, all the data from 22 woodland sites is combined in ensemble 

plots of scatterplot, non-exceedance probability, and boxplot distribution shown in 

Figure 22(d). All the points lie densely on the 45° line indicating a good performance of 

the model. The scatterplot gives a correlation of 0.99 and root mean square error of 0.65 

ft indicating that the model works well over woodlands. According to the non-

exceedance probability plot [see Figure 22(e)], 66.6% of data points have an error of 0.5 

ft or less that increases to 91.0% of data points for an error of 1 ft or less. Figure 22(f) 

shows the distribution of observed and modeled water stage in the form of boxplot. The 

upper and lower edges of the box correspond to 75
th
 and 25

th
 percentile of the data. The 

horizontal line between the box is the median of the data set. The 95
th
 percentile and 5

th
 

percentile are shown by whiskers above and below the box. The boxplot shows that the 

distributions of both observed and modeled water stage are quite similar.   

According to Figure 22(a), the water stage ranges between 11 ft to 17 ft. The 

exposure of trees (> 15 ft) varies with the rise and fall of water stage. This partial 

submergence of trees affects the backscatter. 
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Figure 22 Water stage model as applied to wetlands in woodland. (a) time-series plot of 

observed and modeled water stage. (b) scatterplot of observed and modeled water stage 

(c) Non-exceedance probability plot (d) combined scatterplot of observed and modeled 

water stage for all the woodland sites (e) combined non-exceedance probability plot (f) 

boxplot distribution of observed and modeled water stage. 

 

The results for water stage model over wooded grassland are shown in Figure 

23. Wooded grassland is characterized with tree canopy cover between 10% and 40% 

and tree heights greater than 15 ft. The model captures the variation in water stage with 

correlation coefficient =0.89 and root mean square error= 0.47 ft [Figure 23 (a-c)]. The 

non-exceedance probability plot reveals that 99.3% of the estimates have an absolute 

error of 1 ft or less. This indicates that the model performs well. During the period when 

the water inundation is high, most of the vegetation gets submerged under water 

rendering the surface as smooth that result in low backscatter. High correlation between 

observed and modeled water stage obtained at this site shows the applicability of model 

over wooded grassland. Furthermore, the applicability of the model is also assessed for 
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the combined group behavior of 20 sites in wooded grassland. Most of the data points 

lie along the 45° line with correlation=0.98 and root mean square error=0.65 as shown 

in Figure 23(d). The non-exceedance probability plot in Figure 23(e) shows that 73.2% 

of the water level estimates have an absolute error of 0.5 ft or less and 93.7% of the 

water level estimates have an absolute error of 1 ft or less. The boxplot representing 25
th
 

percentile and 75
th
 percentile match with each other well. Thus, the model results for 

woodland in Figure 22 and wooded grassland in Figure 23 produce similar results as 

both the landuse categories consist of tall vegetation with trees greater than 15 ft. The 

seasonal rise and fall of water stage is also captured reasonably well. 

 

 

Figure 23 Water stage model as applied to wetlands in wooded grassland. (a) time-series 

plot of observed and modeled water stage. (b) scatterplot of observed and modeled 

water stage (c) Non-exceedance probability plot (d) combined scatterplot of observed 

and modeled water stage for all the wooded grassland sites (e) combined non-

exceedance probability plot (f) boxplot distribution of observed and modeled water 

stage. 
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Similar model results for sites in closed shrubland are shown in Figure 24. 

Closed shrubland surface is dominated by shrubs that are less than 15 ft in height. The 

modeled water stage for 2 years of testing data compares well with observed water 

stage. The model works well for the representative site capturing the highs and lows of 

the water stage variation with R=0.86 and root mean square error=0.51 ft. The non-

exceedance plot [Figure 24(c)] shows that 66.9% of the water levels, estimated by the 

model at this site have an absolute error of 0.5 ft and 95.4% of the estimates have an 

absolute error of 1 ft or less.  

In the scatterplot, the points lie along the 45° line with R=0.99 and root mean 

square error=0.53 ft; whereas in the non-exceedance probability plot, 72.1% of the data 

points have an error of 0.5 ft or less and 94.3% of the data points have an error of 1 ft or 

less. The boxplot shows that the 25
th
 percentile, median, and 75

th
 percentile of modeled 

water stage match well with that of observed water stage. In closed shrubland though 

the tree heights are less than 15 ft, the canopy cover of bushes and shrubs is greater than 

40% and is spread across the water stage in the region. Thus the behavior of closed 

shrubland resembles that of woodland and wooded grassland. This is because of the 

variation in water stage that causes partial submergence of bushes and shrubs affecting 

the backscatter measurements. 
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Figure 24 Water stage model as applied to wetlands in closed shrubland. (a) time-series 

plot of observed and modeled water stage. (b) scatterplot of observed and modeled 

water stage (c) Non-exceedance probability plot (d) combined scatterplot of observed 

and modeled water stage for all the closed shrubland sites (e) combined non-exceedance 

probability plot (f) boxplot distribution of observed and modeled water stage. 

 

The model result as applied to open shrubland is shown in Figure 25. Unlike 

closed shrubland, open shrubland consists of tree with height less than 6 ft and less 

canopy cover. The result for 2 years of testing data of the model applied to a 

representative site of open shrubland is shown in Figure 25(a-c). The model is unable to 

capture high water stages observed in the end of year 2008. The scatterplot for the site 

depicts R=0.84 and root mean square error=0.42. The non-exceedance probability plot 

shows that 84.9% of the estimates have an error of 0.5 ft or less and 96.8% of the 

estimates have an error of 1 ft or less.  

The scatterplot of the data points of all 17 open shrubland sites show three 

clusters ranging from low water stage, medium water stage to high water stage. It is 
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seen from the figure that the model works well for all the water stages giving a 

combined R=0.99 and root mean square error of 0.57 ft. The non-exceedance 

probability plot shows that 70.0% of the water levels, estimated by the model have an 

error of 0.5 ft or less and 93.2% of the estimates have an error of 1 ft or less. The 

boxplot distribution shows the model works well to identify most of the range of data 

points except for high stages represented by 95
th
 whisker and low water stage 

represented by 5
th
 percentile. Most of the vegetation in open shrubland (< 6 ft) remains 

submerged under water for most part of the year.  

 

 

Figure 25 Water stage model as applied to wetlands in open shrubland. (a) time-series 

plot of observed and modeled water stage. (b) scatterplot of observed and modeled 

water stage (c) Non-exceedance probability plot (d) combined scatterplot of observed 

and modeled water stage for all the open shrubland sites (e) combined non-exceedance 

probability plot (f) boxplot distribution of observed and modeled water stage. 

 

The performance of the model in the area of grassland is shown in Figure 26. 
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Grassland is covered with continuous herbaceous cover consisting of less than 10% tree 

canopy cover. The model works well and has captured the variation in water stage well 

[Figure 26(a-c)]. The representative site for grassland lies in Everglades and shows the 

efficiency of applicability of the model for the grassland as the data points lie near the 

45° line indicating good model performance. Model performance for this site is high 

since correlation is 0.85 and root mean square error is 0.52 ft. The non-exceedance 

probability plot shows that 77.3% of the data has 0.5 ft or less error in the estimates 

which increases to 1.0 ft or less error for 92.1% of the estimates.  

The combined result of applicability of model to all 36 grassland sites is 

summarized in Figure 26(d-f). The model works reasonably well since the scatterplot 

gives a high correlation of 0.98 and root mean square error of 0.66 ft. The non-

exceedance probability plot for grassland shows that 92.1% of the water stage estimates 

have an error of 1 ft or less. The water in grassland is spread over the herbaceous cover. 

Lowering of water stage in grassland exposes the herbaceous cover and most of the 

backscatter obtained by the TRMMPR is from the vegetated surface. On the other hand, 

high stage values submerge the herbaceous cover of vegetation and render the surface as 

smooth which decreases the amount of backscatter as most of the incident radiation is 

specularly reflected from the water surface. 
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Figure 26 Water stage model as applied to wetlands in grassland. (a) time-series plot of 

observed and modeled water stage. (b) scatterplot of observed and modeled water stage 

(c) Non-exceedance probability plot (d) combined scatterplot of observed and modeled 

water stage for all the grassland sites (e) combined non-exceedance probability plot (f) 

boxplot distribution of observed and modeled water stage. 

 

The behavior of model for cropland is shown in Figure 27. The model works 

well at this site with R=0.79 and root mean square error=0.59 ft. The non-exceedance 

probability plot shows that 60.0% of the water level estimates have an error of 0.5 ft or 

less and 92.2% of the estimates have an error of 1 ft or less [Figure 27(a-c)].  

The model result for a combined analysis of all the 4 cropland sites shows the 

scatterplot of observed and modeled soil moisture. The majority of the points are located 

along the 45° line with R=0.91 and root mean square error=0.60 ft. The probabilistic 

absolute error curve shows that 67.3% of the estimates have an error of 0.5 ft or less 

which increases to 1 ft or less error for 91.9% of the estimates. The modeled water stage 

captures the behavior of observed water stage well. The stage values in cropland ranges 
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from 1 ft to 6 ft. This keeps the vegetation under partial submergence the affect of which 

is captured in the backscatter. 

 

 

Figure 27 Water stage model as applied to wetlands in cropland. (a) time-series plot of 

observed and modeled water stage. (b) scatterplot of observed and modeled water stage 

(c) Non-exceedance probability plot (d) combined scatterplot of observed and modeled 

water stage for all the cropland sites (e) combined non-exceedance probability plot (f) 

boxplot distribution of observed and modeled water stage. 

 

A summary of model performance for all the landuse categories described above 

is listed in Table 4. All landuses have a high correlation value (0.98-0.99) except for 

cropland which has 0.91. This is because of fewer number of sites in this landuse (=4) 

whereas the number of sites in other landuse types is 15 or more. It can also be observed 

from the table that with the exception to cropland, the landuse with greater number of 

sites gives higher root mean square error as compared to landuse that has lesser number 

of sites. The range of root mean square error is between 0.53 ft and 0.66 ft. This shows 
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that the model works well for every landuse type. This is also confirmed by the 

percentage of sites that give an error of 1 ft or less as all the landuse type has more than 

91% of data points that give an error of 1 ft or less. 

 

Table 4 Model performance in various landuse types. 

Landuse  umber 

of sites 

R rmse 

(ft) 

Percentage of 

estimates with 

error < 5% 

Percentage of 

estimates with 

error < 10% 

Grassland 36 0.98 0.66 71.1% 92.1% 

Woodland 22 0.99 0.65 66.6% 91.0% 

Wooded Grassland 20 0.98 0.65 73.2% 93.7% 

Cropland 4 0.91 0.60 67.3% 91.9% 

Open Shrubland 17 0.99 0.57 70.0% 93.2% 

Closed Shrubalnd 15 0.99 0.53 72.1% 94.3% 

 

Figure 28 shows the combined model results as applied to all the water stage 

sites in the study area. A good match between observed and modeled water stage is 

observed with high correlation of 0.99 and root mean square error of 0.63 ft in the 

scatterplot [Figure 28(a)]. Figure 28(b) shows that 74.7% of estimates have an absolute 

error of 0.5 ft or less which increases to 93.5% of estimates having error of 1 ft or less. 

The boxplot distribution in Figure 28(c) shows that the distribution of modeled water 

stage is well representing the distribution of observed water stage except for very low 

water stage values close to zero. This suggests that the water stage model works 

reasonably well for all the sites in wetland region of South Florida. 
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Figure 28 Water stage model as applied to all the water stage sites in wetlands of South 

Florida. (a) combined scatterplot of observed and modeled water stage for all the sites 

(b) combined non-exceedance probability plot (c) boxplot distribution of observed and 

modeled water stage. 

 

Results show that the model that relates ws to σ° works reasonably well for all 

landuses in the study area. In order to obtain better understanding of the role of 

vegetation in the proposed model, NDVI is added into the model, as shown in equation 

4.4. 

%�
�� ����� � µ� 	 � � � 	 �� � 
���� �  !"#$� Eqn. (4.4) 

where, P is the weighing factor describing the effect of NDVI and  µndvi is the average 

NDVI over the calibration period. 

The model calibration parameters and model assessment parameters for two 

cases i.e., with and without NDVI in the model for representative sites of each landuse 

are compared in Table 5. Model calibration and assessment parameters are similar for 

both the cases for most landuse types except for grassland and cropland. This is because 

grassland and cropland do not have any tall vegetation and consists of herbaceous cover 
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and crop producing fields, respectively. NDVI is an index that measures the greenness 

of vegetation. The greenness is strongly linked to geometry in case of grassland and 

cropland but has a weak link with geometry in case of woodland, wooded grassland, and 

shrubland. In woodland, wooded grassland, and shrubland, the vegetation remains same 

for the whole year. However, in case of cropland, the physical changes are brought 

about by the crop cycle of seeding and harvesting which changes the geometrical 

characteristics of the cropland. Similarly, there is a greater variation in greenness of 

grassland throughout the year as compared to other landuse types. Hence, it is seen that 

NDVI impacts the results for grassland and cropland but not for other landuse types. 

 

Table 5 Model parameters and results for various landuse type. 

Landuse Without  DVI With  DVI 

µs T R rmse µs T P R rmse 

Woodland 15.54 0.45 0.93 0.70 15.54 0.45 -0.25 0.94 0.70 

Cropland 5.97 0.45 0.79 0.59 5.97 0.45 -1.29 0.81 0.59 

Closed 

Shrubland 

12.93 0.28 0.86 0.51 12.92 0.28 -1.18 0.86 0.51 

Grassland 6.22 0.42 0.85 0.52 6.24 0.42 -1.74 0.86 0.52 

Wooded 

Grassland 

10.84 0.23 0.89 0.47 10.84 0.23 0.13 0.89 0.47 

Open 

Shrubland 

11.42 0.26 0.84 0.42 11.43 0.26 -0.17 0.84 0.42 

 

4.10. Conclusions 

A simple empirical model is developed that relates water stage to TRMMPR 

backscatter measurements. Backscatter depends on the dielectric and physical 

characteristics of the target area. The backscatter dependence on the partial submergence 
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of vegetation is used as the basis of estimation of water stage from backscatter 

measurements.  

A simple linear model relating backscatter and stage is developed that works 

reasonably well over various landuse types in South Florida. For various landuse types, 

the combined correlation between observed and modeled water stage is 0.99 and root 

mean square error is 0.63 ft. A high correlation and low root mean square error shows 

the strength of the model. Individual landuse types also show high correlation (0.98-

0.99) and low root mean square error (0.53 ft – 0.66 ft) between observed and modeled 

water stage. 

A model relating water stage to TRMMPR backscatter and NDVI is also 

developed and tested. NDVI accounting for vegetation density increases the model 

performance for grassland and cropland. This is because greenness of vegetation 

measured by NDVI has a strong link with the geometrical characteristics of the 

grassland and cropland. On the other landuse types that are characterized by tall trees 

and shrubs‒ woodland, wooded grassland, open shrubland, and closed shrubland, NDVI 

in the model does not improve the results. This is because there is not much variation in 

the vegetation growth from one season to the other as seen in grassland and cropland 

brought about by the crop cycle and seasons of seeding and harvesting of crops. 

This research provides an alternative method of estimating water stage using 

spaceborne backscatter measurements. Moreover, this research gives an insight into the 

effect of water level in partially inundated vegetation on the radar backscatter. This can 
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help scientists, engineers, and policy-makers to understand the comprehensive spatial 

and temporal variability of water stage without installing many measuring gages.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

This study presents the applications of microwave remote sensing in measuring 

the soil moisture and water stage from space. In this thesis, models are developed that 

relate soil moisture and water stage to backscatter measurements. This chapter 

summarizes the goals and important results of this research. The conclusions identify 

new research ideas that are listed as recommendations. The limitations and applications 

of this research are also described. 

To address the first research question in this research, soil moisture is relate to σ° 

and NDVI. σ° being sensitive to dielectric properties is able to capture the soil moisture 

in the target area efficiently. The impact of landuse type on each site is also taken into 

consideration. The estimated values from the model are compared to the observed 

values and the performance of the model is assessed.  

To address the second research question in this research, water stage in wetlands 

of South Florida is related to σ°. The dependence of σ° on the partial submergence of 

vegetation is used as the basis for the study. The effect of vegetation on the model is 

assessed by comparing two model cases‒ (a) that does not include NDVI, and (b) that 

includes NDVI in the model. 

 

5.1. Conclusions 

Microwave remote sensing has proved to be a useful tool in measurement of soil 
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moisture from the space in the past. In the past research, most of such research work has 

been conducted using passive microwave remote sensing. This research uses active 

microwave remote sensing to relate soil moisture and water stage to backscatter 

measurements from TRMMPR. The key results of this research are listed below. 

1. TRMMPR backscatter is related to soil moisture. Within the incidence angle range of 3 

to 15 degrees, there is a linear relationship between σ° and soil moisture. 

2. The relationship of σ° and soil moisture is dependent on the vegetation density. Soil 

moisture estimation improves with incorporation of NDVI into the model. 

3. σ° is affected by changes in the water stage. This relation is explained through the 

changes in the physical characteristics from varying submergence of vegetation in the 

inundated areas. 

4. Taking into effects of NDVI while estimating water stage in wetlands improves the 

results for grasslands and croplands. 

 

5.2. Recommendations 

Based on the above conclusions, few limitations, new questions and research 

ideas are also identified. These could be investigated to extend the research work 

presented in this thesis. Suggestions to address those limitations and extend this work 

include the following. 

1. The spatial resolution used for developing soil moisture model is default 4.4 km 

resolution of TRMMPR backscatter. The spatial resolution of water stage model is 
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arbitrarily selected to be 2 km. An optimal spatial resolution with less noise and high 

resolution could be selected for the research. 

2. The analysis of TRMMPR backscatter variation with incidence angle could be done 

for water stage model to find the optimum incidence angle that could give better results. 

3. LAI is a better measure of vegetation density in terms of the surface area of the leaves 

as compared to NDVI. Hence, LAI could be used in place of NDVI in future work. 

4. The surface roughness could be calculated and its effects could be incorporated in the 

model. 

5. The soil moisture and water stage models could be tested at other locations with 

different sources of data. 

6. The temporal averaging could be done for seven days to obtain behavior at a higher 

temporal resolution. 

 

5.3. Limitations 

Some of the limitations of the soil moisture and water stage models are listed 

below. 

Soil Moisture 

1. Radar backscatter is also sensitive to soil surface roughness. This research relates 

backscatter to soil moisture and vegetation without considering the effects of surface 

roughness. 

2. Backscatter is related to soil moisture and vegetation using a linear model which 
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provides reasonable estimates over arid regions of Southern US. The model performance 

would deteriorate over mountainous terrains. 

3. Ku band waves are scattered by leaves that are comparable to wavelength 2.2 cm. Due 

to this attenuation, the model doesn't perform well in dense vegetation. 

4. The model requires ground data for calibration that is point specific. 

Water Stage 

1. Model performance deteriorates with reduction in vegetation density over the free 

water. 

2. In case of mostly or completely inundated vegetation, the specular reflection 

dominates and model would not work. 

3. The model requires ground data for calibration. 

The research explains the backscatter dependence on the soil moisture and water 

stage. The effect of vegetation cover and landuse is also considered.  

1. The calibrated models can be used to estimate soil moisture and water stage at selected 

sites using the TRMMPR and NDVI data in future.  

2. The understanding developed in this research leads to development of spatial maps of 

soil moisture and water stage. 

This research explores active microwave remote sensing for the estimation of soil 

moisture and water stage from space. Soil moisture and water stage models developed in 

this research provide a novel way of measuring soil moisture and water stage.                                                   
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